Zobrazeno 1 - 10
of 57
pro vyhledávání: '"Ankur Moitra"'
Autor:
Allen Liu, Ankur Moitra
Publikováno v:
Journal of the ACM. 70:1-53
This work represents a natural coalescence of two important lines of work — learning mixtures of Gaussians and algorithmic robust statistics. In particular, we give the first provably robust algorithm for learning mixtures of any constant number of
Publikováno v:
Proceedings of the 55th Annual ACM Symposium on Theory of Computing.
Linear dynamical systems are the foundational statistical model upon which control theory is built. Both the celebrated Kalman filter and the linear quadratic regulator require knowledge of the system dynamics to provide analytic guarantees. Naturall
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c1397a9fc2309965900a2e8ae3a1565d
Autor:
Allen Liu, Ankur Moitra
Publikováno v:
Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) ISBN: 9781611977554
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fbc85303e75a08d1556843fbab671728
https://doi.org/10.1137/1.9781611977554.ch133
https://doi.org/10.1137/1.9781611977554.ch133
Autor:
Allen Liu, Ankur Moitra
In this work, we study the problem of community detection in the stochastic block model with adversarial node corruptions. Our main result is an efficient algorithm that can tolerate an $\epsilon$-fraction of corruptions and achieves error $O(\epsilo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a5f5f83f58c58da11684f50ff30eaf77
http://arxiv.org/abs/2207.11903
http://arxiv.org/abs/2207.11903
Publikováno v:
Communications of the ACM, vol 64, iss 5
In every corner of machine learning and statistics, there is a need for estimators that work not just in an idealized model, but even when their assumptions are violated. Unfortunately, in high dimensions, being provably robust and being efficiently
Autor:
Ankur Moitra
Publikováno v:
Sum of Squares: Theory and Applications. :83-101
Here we revisit the classic problem of linear quadratic estimation, i.e. estimating the trajectory of a linear dynamical system from noisy measurements. The celebrated Kalman filter gives an optimal estimator when the measurement noise is Gaussian, b
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0b6becdbc2e21d6b1ea00c847696c596
Autor:
Rong Ge, Ankur Moitra
Publikováno v:
Beyond the Worst-Case Analysis of Algorithms
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::35ca281c5176b0ae1275eda2a4063d9b
https://doi.org/10.1017/9781108637435.026
https://doi.org/10.1017/9781108637435.026
Autor:
Ankur Moitra
Publikováno v:
Beyond the Worst-Case Analysis of Algorithms
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b21142190d7e8a3d6df24179c0c5a9c1
https://doi.org/10.1017/9781108637435.014
https://doi.org/10.1017/9781108637435.014