Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Anita PASOTTI"'
Autor:
Lorenzo Mella, Anita PASOTTI
Publikováno v:
Journal of Combinatorial Designs. 31:41-83
A $k$-cycle with a pendant edge attached to each vertex is called a $k$-sun. The existence problem for $k$-sun decompositions of $K_v$, with $k$ odd, has been solved only when $k=3$ or $5$. By adapting a method used by Hoffmann, Lindner and Rodger to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::87d1c88aab607ddc2ebb8d50a56907fd
http://hdl.handle.net/11391/1501572
http://hdl.handle.net/11391/1501572
The conjecture, still widely open, posed by Marco Buratti, Peter Horak and Alex Rosa states that a list $L$ of $v-1$ positive integers not exceeding $\left\lfloor \frac{v}{2}\right\rfloor$ is the list of edge-lengths of a suitable Hamiltonian path of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::44b08ba9549e0bb73c145e5781537d49
http://hdl.handle.net/11379/546425
http://hdl.handle.net/11379/546425
Autor:
Simone Costa, Anita Pasotti
In this paper we define a new class of partially filled arrays, called $\lambda$-fold relative Heffter arrays, that are a generalisation of the Heffter arrays introduced by Archdeacon in 2015. After showing the connection of this new concept with sev
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4f9fea6db2466855152d588b3f793fa8
http://arxiv.org/abs/2010.10948
http://arxiv.org/abs/2010.10948
Publikováno v:
Scopus-Elsevier
In this paper we study a tour problem that we came cross while studying biembeddings and Heffter arrays, see [D.S. Archdeacon, Heffter arrays and biembedding graphs on surfaces, Electron. J. Combin. 22 (2015) #P1.74]. Let $A$ be an $n\times m$ toroid
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::933a3564f8f7140a5cdaa01c87b17f99
http://hdl.handle.net/11379/527133
http://hdl.handle.net/11379/527133
In this paper we define a new class of partially filled arrays, called relative Heffter arrays, that are a generalization of the Heffter arrays introduced by Archdeacon in 2015. Let $v=2nk+t$ be a positive integer, where $t$ divides $2nk$, and let $J
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a4c8ebbb8112d384e2d70aeb67078829
http://hdl.handle.net/11379/527132
http://hdl.handle.net/11379/527132
Publikováno v:
Graphs and Combinatorics. 34:901-930
The generalization of the Oberwolfach Problem, proposed by J. Liu in 2000, asks for a uniform $2$-factorization of the complete multipartite graph $K_{m\times n}$. Here we focus our attention on $2$-factorizations regular under the cyclic group $Z_{m
Publikováno v:
Discrete Mathematics. 341:705-712
In this paper we propose a conjecture concerning partial sums of an arbitrary finite subset of an abelian group that naturally arises investigating simple Heffter systems. Then we show its connection with related open problems and we present some res
Publikováno v:
Clinical Neurophysiology. 131:e72-e73
Autor:
Anna Benini, Anita Pasotti
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 35, Iss 1, Pp 43-53 (2015)
An α-labeling of a bipartite graph Γ of size e is an injective function f : V (Γ) → {0, 1, 2, . . . , e} such that {|ƒ(x) − ƒ(y)| : [x, y] ∈ E(Γ)} = {1, 2, . . . , e} and with the property that its maximum value on one of the two bipartit