Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Anita M. Rojas"'
Publikováno v:
Experimental Mathematics. 32:54-69
In this work, we present an algorithm running over SAGE, which allows users to deal with group actions on Riemann surfaces up to topological equivalence. Our algorithm allows us to study the equisy...
In this article we determine the maximal possible order of the automorphism group of the form $ag + b$, where $a$ and $b$ are integers, of a complex three and four-dimensional family of compact Riemann surfaces of genus $g$, appearing for all genus.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4cd9c73da9249c423993b19129d41975
http://arxiv.org/abs/2004.14811
http://arxiv.org/abs/2004.14811
Autor:
Patricio Barraza, Anita M. Rojas
Publikováno v:
Archiv der Mathematik. 104:145-155
We describe the action of the full automorphisms group on the Fermat curve of degree N. For N prime, we obtain the group algebra decomposition of the corresponding Jacobian variety.
Publikováno v:
JOURNAL OF PURE AND APPLIED ALGEBRA
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
We prove that given a finite group G together with a set of fixed geometric generators, there is a family of special hyperbolic polygons that uniformize the Riemann surfaces admitting the action of G with the given geometric generators. From these sp
Autor:
Herbert Lange, Anita M. Rojas
Publikováno v:
ARCHIV DER MATHEMATIK
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
We outline a method to compute the type of the induced polarization of an abelian subvariety of a canonically polarized Jacobian of a smooth projective curve. The method works for curves of not too big genus admitting a “large” group of automorph
Publikováno v:
In the Tradition of Ahlfors–Bers, V. :49-60
Autor:
Luis Arenas-Carmona, Anita M. Rojas
Publikováno v:
In the Tradition of Ahlfors–Bers, V. :35-47
Autor:
Herbert Lange, Anita M. Rojas
Publikováno v:
manuscripta mathematica. 125:225-240
Let G be a finite group, \(\Lambda\) an absolutely irreducible \({\mathbb{Z}}[G]\) -module and w a weight of \(\Lambda\) . To any Galois covering with group G we associate two correspondences, the Schur and the Kanev correspondence. We work out their
Autor:
Anita M. Rojas
Publikováno v:
Rev. Mat. Iberoamericana 23, no. 2 (2007), 397-420
Consider a finite group $G$ acting on a Riemann surface $S$, and the associated branched Galois cover $\pi_G:S \to Y=S/G$. We introduce the concept of geometric signature for the action of $G$, and we show that it captures the information of the geom
We give a criterion in terms of period matrices for an arbitrary polarized abelian variety to be non-simple. Several examples are worked out.
Final version, to appear in Journal of Pure and Applied Algebra
Final version, to appear in Journal of Pure and Applied Algebra
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a1467345fce9f460678f198cf514a6b3
http://arxiv.org/abs/1507.08876
http://arxiv.org/abs/1507.08876