Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Anish Suvarna"'
Autor:
Joshua J Levy, Matthew J Davis, Rachael S Chacko, Michael J Davis, Lucy J Fu, Tarushii Goel, Akash Pamal, Irfan Nafi, Abhinav Angirekula, Anish Suvarna, Ram Vempati, Brock C Christensen, Matthew S Hayden, Louis J Vaickus, Matthew R LeBoeuf
Publikováno v:
npj Precision Oncology, Vol 8, Iss 1, Pp 1-18 (2024)
Abstract Successful treatment of solid cancers relies on complete surgical excision of the tumor either for definitive treatment or before adjuvant therapy. Intraoperative and postoperative radial sectioning, the most common form of margin assessment
Externí odkaz:
https://doaj.org/article/570c1948b6fb48e796a4dd6a1535e5e9
Autor:
Zarif L. Azher, Anish Suvarna, Ji-Qing Chen, Ze Zhang, Brock C. Christensen, Lucas A. Salas, Louis J. Vaickus, Joshua J. Levy
Publikováno v:
BioData Mining, Vol 16, Iss 1, Pp 1-24 (2023)
Abstract Background Deep learning models can infer cancer patient prognosis from molecular and anatomic pathology information. Recent studies that leveraged information from complementary multimodal data improved prognostication, further illustrating
Externí odkaz:
https://doaj.org/article/405e3e618847455ba7cb68b154e0f865
Autor:
Joshua Levy, Yunrui Lu, Marietta Montivero, Ojas Ramwala, Jason McFadden, Carly Miles, Adam Gilbert Diamond, Ramya Reddy, Ram Reddy, Taylor Hudson, Zarif Azher, Akash Pamal, Sameer Gabbita, Tess Cronin, Abdol Aziz Ould Ismail, Tarushii Goel, Sanjay Jacob, Anish Suvarna, Sumanth Ratna, Jason Zavras, Louis Vaickus
Publikováno v:
Advances in Molecular Pathology. 5:e1-e24
Autor:
Matthew J. Davis, Gokul Srinivasan, Rachael Chacko, Sophie Chen, Anish Suvarna, Louis J. Vaickus, Veronica C. Torres, Sassan Hodge, Eunice Y. Chen, Sarah Preum, Kimberley S. Samkoe, Brock C. Christensen, Matthew LeBoeuf, Joshua J. Levy
Publikováno v:
medRxiv
ImportanceIntraoperative margin analysis is crucial for the successful removal of cutaneous squamous cell carcinomas (cSCC). Artificial intelligence technologies (AI) have previously demonstrated potential for facilitating rapid and complete tumor re
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7b349f4cd574c5b1fa139ce1e6495ac3
https://doi.org/10.1101/2023.05.14.23289960
https://doi.org/10.1101/2023.05.14.23289960
Autor:
Zarif L. Azher, Anish Suvarna, Ji-Qing Chen, Ze Zhang, Brock C. Christensen, Lucas A. Salas, Louis J. Vaickus, Joshua J. Levy
Deep learning models have demonstrated the remarkable ability to infer cancer patient prognosis from molecular and anatomic pathology information. Studies in recent years have demonstrated that leveraging information from complementary multimodal dat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4034b434b156608893afde5f755d39a2
https://doi.org/10.1101/2022.11.21.517440
https://doi.org/10.1101/2022.11.21.517440