Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Aniruddha Pant"'
Autor:
Wilson K. M. Wong, Vinod Thorat, Mugdha V. Joglekar, Charlotte X. Dong, Hugo Lee, Yi Vee Chew, Adwait Bhave, Wayne J. Hawthorne, Feyza Engin, Aniruddha Pant, Louise T. Dalgaard, Sharda Bapat, Anandwardhan A. Hardikar
Publikováno v:
Frontiers in Endocrinology, Vol 13 (2022)
Machine learning (ML)-workflows enable unprejudiced/robust evaluation of complex datasets. Here, we analyzed over 490,000,000 data points to compare 10 different ML-workflows in a large (N=11,652) training dataset of human pancreatic single-cell (sc-
Externí odkaz:
https://doaj.org/article/4c6b7c34dcfa4335982bc4796e302990
Publikováno v:
ICT Systems and Sustainability ISBN: 9789811659867
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6a45eeaf174e8964e5c40048f1a09393
https://doi.org/10.1007/978-981-16-5987-4_29
https://doi.org/10.1007/978-981-16-5987-4_29
Publikováno v:
Lecture Notes in Networks and Systems ISBN: 9783030853648
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e06bd2edddf12f392d5e0d5c99ff9133
https://doi.org/10.1007/978-3-030-85365-5_16
https://doi.org/10.1007/978-3-030-85365-5_16
Publikováno v:
ICT Systems and Sustainability ISBN: 9789811659867
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a54fa17629a7aa7234c9b8760670b49b
https://doi.org/10.1007/978-981-16-5987-4_11
https://doi.org/10.1007/978-981-16-5987-4_11
Publikováno v:
2021 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD).
Image segmentation plays a pivotal role in several medical-imaging applications by assisting the segmentation of the regions of interest. Deep learning-based approaches have been widely adopted for semantic segmentation of medical data. In recent yea
Autor:
Vinod Thorat, Louise Torp Dalgaard, Hugo Lee, Adwait Bhave, Wilson K. M. Wong, Charlotte X. Dong, Mugdha V. Joglekar, Sharda Bapat, Anandwardhan A. Hardikar, Wayne J. Hawthorne, Feyza Engin, Aniruddha Pant, Yi Vee Chew
Machine learning (ML)-workflows enable unprejudiced/robust evaluation of complex datasets. Here, we analyzed over 490,000,000 data points to compare 10 different ML-workflows in a large (N=11,652) training dataset of human pancreatic single-cell (sc-
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f5159a3723e5749d18b49f845ebd9af0
https://doi.org/10.1101/2021.03.27.437353
https://doi.org/10.1101/2021.03.27.437353
Autor:
Ashrika Gaikwad, Harshit Madaan, K. N. Bhanu Prakash, Shriya Suryavanshi, Aniruddha Pant, Manish Gawali, Viraj Kulkarni, Channarayapatna Srinivas Arvind
Publikováno v:
Medical Image Understanding and Analysis ISBN: 9783030804312
MIUA
MIUA
Data privacy regulations pose an obstacle to healthcare centres and hospitals to share medical data with other organizations, which in turn impedes the process of building deep learning models in the healthcare domain. Distributed deep learning metho
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2c8ed80effc50e8a36ce093c71656a9e
https://doi.org/10.1007/978-3-030-80432-9_34
https://doi.org/10.1007/978-3-030-80432-9_34
We propose an automated method based on deep learning to compute the cardiothoracic ratio and detect the presence of cardiomegaly from chest radiographs. We develop two separate models to demarcate the heart and chest regions in an X-ray image using
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d3514a8b8f7627453d3623800d193a35
Publikováno v:
ICPRAM
COVID-19 is an infectious disease that causes respiratory problems similar to those caused by SARS-CoV (2003). Currently, swab samples are being used for its diagnosis. The most common testing method used is the RT-PCR method, which has high specific
Publikováno v:
2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4).
Federated learning enables machine learning models to learn from private decentralized data without compromising privacy. The standard formulation of federated learning produces one shared model for all clients. Statistical heterogeneity due to non-I