Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Anil Kumar Karn"'
Publikováno v:
The Electronic Journal of Linear Algebra. 35:599-618
Let $a,b$ be elements in a unital C$^*$-algebra with $0\leq a,b\leq 1$. The element $a$ is absolutely compatible with $b$ if $$\vert a - b \vert + \vert 1 - a - b \vert = 1.$$ In this note we find some technical characterizations of absolutely compat
Publikováno v:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 113:2731-2744
Let a and b be elements in the closed ball of a unital C $$^*$$ -algebra A (if A is not unital we consider its natural unitization). We shall say that a and b are domain (respectively, range) absolutely compatible ( $$a\triangle _d b$$ , respectively
Autor:
Anil Kumar Karn, Amit kumar
Publikováno v:
Advances in Operator Theory. 6
In this paper, we describe the Grothendieck group $K_0(V)$ of an absolute matrix order unit space $V$. For this purpose, we discuss the direct limit of absolute matrix order unit spaces. We show that $K_0$ is a functor from category of absolute matri
Autor:
Anil Kumar Karn
Publikováno v:
Trends in Mathematics ISBN: 9783030709730
In this article, we introduce the notions ortho-infimum and ortho-supremum of a pair of self-adjoint elements in a general C∗-algebra with the help of algebraic orthogonality as non-commutative analogues of infimum and supremum respectively. In a c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fb32b99f73cad6eb1dc9e9b074eb1efc
https://doi.org/10.1007/978-3-030-70974-7_11
https://doi.org/10.1007/978-3-030-70974-7_11
Autor:
Anil Kumar Karn, Anindya Ghatak
Publikováno v:
Acta Scientiarum Mathematicarum. 85:659-679
We discuss the order-theoretic properties of CM-ideals in matricially order smooth∞-normed spaces. We study the relation between CM-ideals and CL-summands in the matrix duality setup. We introduce the notion of L1-matricial split faces in an L1-mat
Autor:
Anindya Ghatak, Anil Kumar Karn
Publikováno v:
Positivity. 23:413-429
We characterize $M$-ideals in order smooth $\infty$-normed spaces by extending the notion of split faces of the state space to those of the quasi-state space. We also characterize approximate order unit spaces as those order smooth $\infty$-normed sp
Autor:
Anil Kumar Karn, Antara Bhar
Publikováno v:
Glasgow Mathematical Journal. 60:123-134
Let λ be a symmetric, normal sequence space equipped with a k-symmetric, monotone norm ‖.‖λ. Also, assume that (λ, ‖.‖λ) is AK-BK. Corresponding to this sequence space λ, we study compactness of the operator ideal Kλ. We proved compactn
Autor:
Anil Kumar Karn
Using a technique of adjoining an order unit to a normed linear space, we have characterized strictly convex spaces among normed linear spaces and Hilbert spaces among strictly convex Banach spaces respectively. This leads to a generalization of spin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2b7cdd88bf6785032a4d1fd3c27e9500
Autor:
Amit kumar, Anil Kumar Karn
In this paper, we extend the notion of orthogonality to the general elements of an absolute matrix order unit space and relate it to the orthogonality among positive elements. We introduce the notion of a partial isometry in an absolute matrix order
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::06e76c0f6e186c34b9454fd533976ec6
http://arxiv.org/abs/1912.05792
http://arxiv.org/abs/1912.05792
Autor:
Amit kumar, Anil Kumar Karn
We prove that for a bijective, unital, linear map between absolute order unit spaces is an isometry if, and only if, it is absolute value preserving. We deduce that, on (unital) $JB$-algebras, such maps are precisely Jordan isomorphisms. Next, we int
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::30c0b24203ec1698608beb31c10ac775
http://arxiv.org/abs/1903.05302
http://arxiv.org/abs/1903.05302