Zobrazeno 1 - 10
of 52
pro vyhledávání: '"Angenent, Sigurd B."'
A PINK1 input threshold arises from positive feedback in the PINK1/Parkin mitophagy decision circuit
Publikováno v:
In Cell Reports 31 October 2023 42(10)
Autor:
Angenent, Sigurd B., Knopf, Dan
Publikováno v:
Geom. Funct. Anal. (GAFA) 32 (2022), no.3, 411--489
In dimension $n=3$, there is a complete theory of weak solutions of Ricci flow - the singular Ricci flows introduced by Kleiner and Lott - which are unique across singularities, as was proved by Bamler and Kleiner. We show that uniqueness should not
Externí odkaz:
http://arxiv.org/abs/1909.08087
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Involve 12 (2019) 1015-1034
We give an existence proof for distribution solutions to a scalar reaction diffusion equation, with the aim of illustrating both the differences and the common ingredients of the nonstandard and standard approaches. In particular, our proof shows how
Externí odkaz:
http://arxiv.org/abs/1809.06430
In this paper we consider closed non-collapsed ancient solutions to the mean curvature flow ($n \ge 2$) which are uniformly two-convex. We prove that any two such ancient solutions are the same up to translations and scaling. In particular, they must
Externí odkaz:
http://arxiv.org/abs/1804.07230
In earlier work, we derived formal matched asymptotic profiles for families of Ricci flow solutions developing Type-II degenerate neckpinches. In the present work, we prove that there do exist Ricci flow solutions that develop singularities modeled o
Externí odkaz:
http://arxiv.org/abs/1208.4312
We provide a detailed description of solutions of Curve Shortening in $\R^n$ that are invariant under some one-parameter symmetry group of the equation, paying particular attention to geometric properties of the curves, and the asymptotic properties
Externí odkaz:
http://arxiv.org/abs/1207.4051
Gu and Zhu have shown that Type-II Ricci flow singularities develop from nongeneric rotationally symmetric Riemannian metrics on $S^m$, for all $m\geq 3$. In this paper, we describe and provide plausibility arguments for a detailed asymptotic profile
Externí odkaz:
http://arxiv.org/abs/1011.4868
In this paper, we construct smooth forward Ricci flow evolutions of singular initial metrics resulting from rotationally symmetric neckpinches on S^(n+1), without performing an intervening surgery. In the restrictive context of rotational symmetry, t
Externí odkaz:
http://arxiv.org/abs/0907.0232
Autor:
Angenent, Sigurd B.
Publikováno v:
Ann. of Math. (2) 162 (2005), no. 3, 1187--1241
We study "flat knot types" of geodesics on compact surfaces M^2. For every flat knot type and any Riemannian metric g we introduce a Conley index associated with the curve shortening flow on the space of immersed curves on M^2. We conclude existence
Externí odkaz:
http://arxiv.org/abs/0705.3012