Zobrazeno 1 - 10
of 90
pro vyhledávání: '"Angeloni, Laura"'
In this paper we introduce a new family of Bernstein-type exponential polynomials on the hypercube $[0, 1]^d$ and study their approximation properties. Such operators fix a multidimensional version of the exponential function and its square. In parti
Externí odkaz:
http://arxiv.org/abs/2405.16935
Autor:
Angeloni, Laura, Costarelli, Danilo
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 April 2024 532(1)
Autor:
Angeloni Laura, Vinti Gianluca
Publikováno v:
Open Mathematics, Vol 21, Iss 1, Pp 41-56 (2023)
The main purpose of this article is to prove a result of convergence in variation for a family of multidimensional sampling-Kantorovich operators in the case of averaged-type kernels. The setting in which we work is that one of BV-spaces in the sense
Externí odkaz:
https://doaj.org/article/0477fe5636d54c89aa66fbd9889c031e
In this paper we study the problem of the convergence in variation for the generalized sampling series based upon averaged-type kernels in the multidimensional setting. As a crucial tool, we introduce a family of operators of sampling-Kantorovich typ
Externí odkaz:
http://arxiv.org/abs/1906.03021
In this paper, we study the convergence in variation for the generalized sampling operators based upon averaged-type kernels and we obtain a characterization of absolutely continuous functions. This result is proved exploiting a relation between the
Externí odkaz:
http://arxiv.org/abs/1710.04621
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Angeloni, Laura, Vinti, Gianluca
In this paper we study convergence results and rate of approximation for a family of linear integral operators of Mellin type in the frame of $BV^{\varphi}(\mathbb{R}^N_+)$. Here $BV^{\varphi}(\mathbb{R}^N_+)$ denotes the space of functions with boun
Externí odkaz:
http://arxiv.org/abs/1408.6168
Autor:
Margiotta, Flavia Manzo, Michelucci, Alessandra, Panduri, Salvatore, Angeloni, Laura, Fidanzi, Cristian, Granieri, Giammarco, Morganti, Riccardo, Romanelli, Marco, Dini, Valentina
Publikováno v:
JEADV Clinical Practice; Mar2024, Vol. 3 Issue 1, p65-75, 11p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
ANGELONI, LAURA1 laura.angeloni@unipg.it, ÇETIN, NURSEL2 nurselcetin07@gmail.com, COSTARELLI, DANILO1 danilo.costarelli@unipg.it, SAMBUCINI, ANNA RITA1 anna.sambucini@unipg.it, VINTI, GIANLUCA1 gianluca.vinti@unipg.it
Publikováno v:
Constructive Mathematical Analysis. Jun2021, Vol. 4 Issue 2, p229-241. 13p.