Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Angelo Barone-Netto"'
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
In this paper we deal with attractive central forces, more precisely with the system $$\ddot x = - xf(x,y), \ddot y = - yf(x,y), f(0,0) > 0 f \in C^\omega .$$ We characterize the stability of the origin whenever the system admits a first integral of
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
In this paper we deal with attractive central forces, more precisely with the system¶¶\(\ddot{x} = -xf(x,y), \,\, {\ddot{y}} = -yf(x,y), \,\, f(0,0) \ge 0.\)¶¶We characterize the stability of the origin whenever the system admits a first integral
Publikováno v:
Journal of Differential Equations. 91:235-244
In this work we establish a Liapunov function for the equilibrium for almost all systems x = −xƒ(x) , y = −yg(x) , ƒ, g: U → R , 0 ϵ U = U ⊂ R ,ƒ, g ϵ C 2 ,ƒ(0), g(0) > 0 .
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
In this work, we obtain criteria for the stability of the origin for the system x =−xf(x), y =−yg(x) (P) , where f,g are positive in a neighbourhood of 0∈ R . We start with abstract necessary and sufficient conditions, and develop them into pra
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9167cc26a9548676b01c82e0601ade12
http://hdl.handle.net/11390/705441
http://hdl.handle.net/11390/705441
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We give a complete answer to the problem of the finite decidability of the local extremality character of a real analytic function at a given point, a problem that found partial answers in some works by Severi and Łojasiewicz. Consider a real analyt
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f190abae7ea2a0dd7076eb3153803b1d
http://hdl.handle.net/11390/709239
http://hdl.handle.net/11390/709239
Publikováno v:
Journal of Differential Equations. (1):142-151
The aim of this work is to obtain a necessary and sufficient condition in order that the origin be a stable equilibrium for the system { x = −xf(x) }, { y = −yg(x) }, f (0), g (0)>0.
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
The aim of this work is to study some cases of stability of particularly in the case of non-conservative central attractive forces: In section 2, we define pseudo-conservative forces, generalize some well-known theorems in mechanics and obtain a nece
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c33303ce28ecfadb3f6b721d1f246e54