Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Angelia Nedich"'
Publikováno v:
ISIT
The problem of estimating the support of a distribution is of great importance in many areas of machine learning, computer science, physics and biology. Most of the existing work in this domain has focused on settings that assume perfectly accurate s
Publikováno v:
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
IEEE Transactions on Automatic Control, 67(6)
Universitat Politècnica de Catalunya (UPC)
IEEE Transactions on Automatic Control, 67(6)
A multi-agent optimization problem motivated by the management of energy systems is discussed. The associated cost function is separable and convex although not necessarily strongly convex and there exist edge-based coupling equality constraints. In
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d29a9e94774e999d561661ba45accdef
http://hdl.handle.net/2117/362457
http://hdl.handle.net/2117/362457
Autor:
Angelia Nedich, A. Uribe C´Esar
Publikováno v:
ИНТЕЛЛЕКТУАЛИЗАЦИЯ ОБРАБОТКИ ИНФОРМАЦИИ ISBN: 9785945882362
ИНТЕЛЛЕКТУАЛИЗАЦИЯ ОБРАБОТКИ ИНФОРМАЦИИ
ИНТЕЛЛЕКТУАЛИЗАЦИЯ ОБРАБОТКИ ИНФОРМАЦИИ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::296c07c24332471f7907373a8ed25878
https://doi.org/10.30826/idp201833
https://doi.org/10.30826/idp201833
Autor:
Angelia Nedich, Tatiana Tatarenko
In this work, we consider a constrained convex problem with linear inequalities and provide an inexact penalty re-formulation of the problem. The novelty is in the choice of the penalty functions, which are smooth and can induce a non-zero penalty ov
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e8d379e88d426ad23d5caeeb915c0ab6
http://arxiv.org/abs/1808.07749
http://arxiv.org/abs/1808.07749
Autor:
Angelia Nedich
Publikováno v:
Foundations and Trends® in Systems and Control. 2:1-100
Publikováno v:
CDC
This paper considers the problem of distributed optimization over time-varying undirected graphs. We discuss a distributed algorithm, which we call DIGing, for solving this problem based on a combination of an inexact gradient method and a gradient t
Autor:
Angelia Nedich, Minh Do
Publikováno v:
2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton).
Autor:
Ion Necoara, Angelia Nedich
Publikováno v:
ECC
In this paper we propose a distributed dual gradient algorithm for minimizing linearly constrained separable convex problems and analyze its rate of convergence. In particular, we show that under the assumption that the Hessian of the primal objectiv
Autor:
Asuman Ozdaglar, Angelia Nedich
Publikováno v:
Journal of Global Optimization. 40:545-573
We provide a unifying geometric framework for the analysis of general classes of duality schemes and penalty methods for nonconvex constrained optimization problems. We present a separation result for nonconvex sets via general concave surfaces. We u
Publikováno v:
Computational Mathematics and Modeling. 8:85-94
A continuous regularization method based on the proximal method is proposed for minimization problems with an inexact objective function. Sufficient convergence conditions are given, and the regularizing operator is constructed.