Zobrazeno 1 - 10
of 168
pro vyhledávání: '"Andries E. Brouwer"'
Autor:
Andries E. Brouwer, Mihaela Popoviciu
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 8, p 075 (2012)
Let $V_n$ be the ${m SL}_2$-module of binary forms of degree $n$and let $V = V_1 oplus V_3 oplus V_4$. We show that the minimum number of generators of the algebra $R = mathbb{C}[V]^{{m SL}_2}$ of polynomial functions on $V$ invariant under the actio
Externí odkaz:
https://doaj.org/article/592ad17959f248e0a349c4d3ce317fba
Publikováno v:
Geometriae Dedicata. 217
Majorana theory is an axiomatic tool for studying the Monster group M and its subgroups through the 196,884-dimensional Conway–Griess–Norton algebra. The theory was introduced by A. A. Ivanov in 2009 and since then it experienced a remarkable dev
Autor:
Andries E. Brouwer, H. Van Maldeghem
Strongly regular graphs lie at the intersection of statistical design, group theory, finite geometry, information and coding theory, and extremal combinatorics. This monograph collects all the major known results together for the first time in book f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b0b10420f2ec6f52938168597bbebab1
https://doi.org/10.1017/9781009057226
https://doi.org/10.1017/9781009057226
Autor:
Andries E. Brouwer, William J. Martin
We give a tight bound for the triple intersection numbers of Paley graphs. In particular, we show that any three vertices have a common neighbor in Paley graphs of order larger than 25.
Comment: 3 pages
Comment: 3 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ac312128ced984b2a1b3e097d4f15775
Publikováno v:
Discrete and Computational Geometry, 53(4), 890-913. Springer
We study the monoid generated by n-by-n distance matrices under tropical (or min-plus) multiplication. Using the tropical geometry of the orthogonal group, we prove that this monoid is a finite polyhedral fan of dimension n(n-1)/2, and we compute the
Publikováno v:
Electronic Journal of Linear Algebra, 28, 4-11. International Linear Algebra Society
Godsil-McKay switching is an operation on graphs that doesnât change the spectrum of the adjacency matrix. Usually (but not always) the obtained graph is non-isomorphic with the original graph. We present a straightforward sufficient condition f
Autor:
Andries E. Brouwer, Sven Polak
Publikováno v:
Designs, Codes, and Cryptography
Designs, Codes and Cryptography, 87, 1881-1895
Designs, Codes and Cryptography, 87, 1881-1895
For $n,d,w \in \mathbb{N}$, let $A(n,d,w)$ denote the maximum size of a binary code of word length $n$, minimum distance $d$ and constant weight $w$. Schrijver recently showed using semidefinite programming that $A(23,8,11)=1288$, and the second auth
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c06262b47c4dc162263384c687b5c1d9
http://arxiv.org/abs/1709.02195
http://arxiv.org/abs/1709.02195
We develop an algorithm for efficiently computing recursively defined functions on posets. We illustrate this algorithm by disproving conjectures about the game Subset Takeaway (Chomp on a hypercube) and computing the number of linear extensions of t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d093b1c17e288a10544802b7d5379741
Publikováno v:
Journal of Combinatorial Theory, Series B, 133, 88-121. Academic Press Inc.
JOURNAL OF COMBINATORIAL THEORY SERIES B
JOURNAL OF COMBINATORIAL THEORY SERIES B
We prove a conjecture by Van Dam and Sotirov on the smallest eigenvalue of (distance-$j$) Hamming graphs and a conjecture by Karloff on the smallest eigenvalue of (distance-$j$) Johnson graphs. More generally, we study the smallest eigenvalue and the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a85d85b5b7986bc18d649acebdb9e61e
Publikováno v:
European Journal of Combinatorics. 35:95-104
We determine the maximal cocliques of size >=5q^2+5q+2 in the Kneser graph on point-plane flags in PG(4,q). The maximal size of a coclique in this graph is (q^2+q+1)(q^3+q^2+q+1).