Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Andrey Yu. Trifonov"'
Publikováno v:
Symmetry, Vol 12, Iss 2, p 201 (2020)
We propose an approach to constructing semiclassical solutions for the generalized multidimensional Gross−Pitaevskii equation with a nonlocal interaction term. The key property of the solutions is that they are concentrated on a one-dimensional man
Externí odkaz:
https://doaj.org/article/e1c3c01435ec417eaf79ad17c65d249e
Publikováno v:
Symmetry, Vol 11, Iss 3, p 366 (2019)
We propose an approximate analytical approach to a ( 1 + 1 ) dimensional two-component system consisting of a nonlocal generalization of the well-known Fisher–Kolmogorov–Petrovskii– Piskunov (KPP) population equation and a diffusion equation fo
Externí odkaz:
https://doaj.org/article/e9f747729a2e44b6a396dfca38b2de68
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 9, p 066 (2013)
We consider the symmetry properties of an integro-differential multidimensional Gross-Pitaevskii equation with a nonlocal nonlinear (cubic) term in the context of symmetry analysis using the formalism of semiclassical asymptotics. This yields a semic
Externí odkaz:
https://doaj.org/article/baf2d4abd467469a914eeb68e37034fd
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 3, p 005 (2007)
The Cauchy problem for the Fokker-Plank-Kolmogorov equation with a nonlocal nonlinear drift term is reduced to a similar problem for the correspondent linear equation. The relation between symmetry operators of the linear and nonlinear Fokker-Plank-K
Externí odkaz:
https://doaj.org/article/9b9dd301414240e0a7df0eaff3fcb38a
Publikováno v:
Symmetry. 2021. Vol. 132, № 7. P. 1289 (1-22)
Symmetry, Vol 13, Iss 1289, p 1289 (2021)
Symmetry
Volume 13
Issue 7
Symmetry, Vol 13, Iss 1289, p 1289 (2021)
Symmetry
Volume 13
Issue 7
We propose the approach to constructing semiclassical spectral series for the generalized multidimensional stationary Gross–Pitaevskii equation with a nonlocal interaction term. The eigenvalues and eigenfunctions semiclassically concentrated on a c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::590a2b69c8f2ffab243ebaef31c8f20e
https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000897883
https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000897883
Publikováno v:
Symmetry
Volume 12
Issue 2
Symmetry, Vol 12, Iss 2, p 201 (2020)
Symmetry. 2020. Vol. 12, № 2. P. 201 (1-25)
Volume 12
Issue 2
Symmetry, Vol 12, Iss 2, p 201 (2020)
Symmetry. 2020. Vol. 12, № 2. P. 201 (1-25)
We propose an approach to constructing semiclassical solutions for the generalized multidimensional Gross&ndash
Pitaevskii equation with a nonlocal interaction term. The key property of the solutions is that they are concentrated on a one-dimens
Pitaevskii equation with a nonlocal interaction term. The key property of the solutions is that they are concentrated on a one-dimens
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8ca826eec98e99167eb209b912aa3d6b
http://earchive.tpu.ru/handle/11683/64810
http://earchive.tpu.ru/handle/11683/64810
Publikováno v:
Physical Review
Physical Review D
Physical Review D
Recently we derived a soft-wall AdS-Schwarzschild approach at small temperatures for the description of hadrons with integer spin and adjustable number of constituents (mesons, tetraquarks, dibaryons, etc.). In the present paper we extend our formali
Publikováno v:
Physical Review
We derive a holographic soft-wall approach in five dimensional AdS-Schwarzschild space for the description of mesons at finite temperature. In this first application we consider the small temperature limit and derive analytical expression for the mas
Autor:
Andrey Yu. Trifonov, A. V. Shapovalov
Publikováno v:
Symmetry. 2019. Vol. 11, № 3. P. 366 (1-19)
Symmetry, Vol 11, Iss 3, p 366 (2019)
Symmetry
Volume 11
Issue 3
Symmetry, Vol 11, Iss 3, p 366 (2019)
Symmetry
Volume 11
Issue 3
We propose an approximate analytical approach to a ( 1 + 1 ) dimensional two-component system consisting of a nonlocal generalization of the well-known Fisher&ndash
Kolmogorov&ndash
Petrovskii&ndash
Piskunov (KPP) population equation a
Kolmogorov&ndash
Petrovskii&ndash
Piskunov (KPP) population equation a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cce2f45f93e86d005a80f606cd783a03
http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000660104
http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000660104
Autor:
Andrey Yu Trifonov, Stefano Bellucci
Publikováno v:
Journal of Physics A: Mathematical and General. 38:L103-L114
Based on Maslov's complex germ method, a semiclassical asymptotic in a class of semiclassically concentrated functions is constructed for the one-dimensional Fokker–Planck equation with a nonlocal nonlinearity. The Einstein–Ehrenfest system descr