Zobrazeno 1 - 10
of 94
pro vyhledávání: '"Andrey V Emelyanov"'
Autor:
Anna N. Matsukatova, Nikita V. Prudnikov, Vsevolod A. Kulagin, Silvia Battistoni, Anton A. Minnekhanov, Andrey D. Trofimov, Aleksandr A. Nesmelov, Sergey A. Zavyalov, Yulia N. Malakhova, Matteo Parmeggiani, Alberto Ballesio, Simone Luigi Marasso, Sergey N. Chvalun, Vyacheslav A. Demin, Andrey V. Emelyanov, Victor Erokhin
Publikováno v:
Advanced Intelligent Systems, Vol 5, Iss 6, Pp n/a-n/a (2023)
Nowadays, neuromorphic systems based on memristors are considered promising approaches to the hardware realization of artificial intelligence systems with efficient information processing. However, a major bottleneck in the physical implementation of
Externí odkaz:
https://doaj.org/article/afe53d1d20d64d4897e6a0f78f99dadb
Autor:
Dinar N. Masaev, Alina A. Suleimanova, Nikita V. Prudnikov, Mariia V. Serenko, Andrey V. Emelyanov, Vyacheslav A. Demin, Igor A. Lavrov, Max O. Talanov, Victor V. Erokhin
Publikováno v:
Frontiers in Neuroscience, Vol 17 (2023)
Existing methods of neurorehabilitation include invasive or non-invasive stimulators that are usually simple digital generators with manually set parameters like pulse width, period, burst duration, and frequency of stimulation series. An obvious lac
Externí odkaz:
https://doaj.org/article/292c6ece758542998bb12331d166e4b4
Autor:
Anna N. Matsukatova, Aleksandr I. Iliasov, Kristina E. Nikiruy, Elena V. Kukueva, Aleksandr L. Vasiliev, Boris V. Goncharov, Aleksandr V. Sitnikov, Maxim L. Zanaveskin, Aleksandr S. Bugaev, Vyacheslav A. Demin, Vladimir V. Rylkov, Andrey V. Emelyanov
Publikováno v:
Nanomaterials, Vol 12, Iss 19, p 3455 (2022)
Convolutional neural networks (CNNs) have been widely used in image recognition and processing tasks. Memristor-based CNNs accumulate the advantages of emerging memristive devices, such as nanometer critical dimensions, low power consumption, and fun
Externí odkaz:
https://doaj.org/article/7db577f9447f464c890685f1881e4389
Autor:
Anna N. Matsukatova, Artem Yu. Vdovichenko, Timofey D. Patsaev, Pavel A. Forsh, Pavel K. Kashkarov, Vyacheslav A. Demin, Andrey V. Emelyanov
Publikováno v:
Nano Research. 16:3207-3214
Autor:
Nikita V. Prudnikov, Vsevolod A. Kulagin, Silvia Battistoni, Vyacheslav A. Demin, Victor V. Erokhin, Andrey V. Emelyanov
Publikováno v:
physica status solidi (a).
Autor:
V. A. Luzanov, A. S. Vedeneev, Andrey V. Emelyanov, Sergey Nikolaev, A. S. Bugaev, V. V. Rylkov, A. M. Kozlov
Publikováno v:
Journal of Communications Technology and Electronics. 66:1196-1200
Autor:
Dmitry V. Nekhaev, Andrey V. Emelyanov, Mikhail V. Kovalchuk, Vladimir V. Rylkov, Vyacheslav A. Demin, Igor A. Surazhevsky, K. E. Nikiruy, Sergey Nikolaev
Publikováno v:
Neural Networks. 134:64-75
This work is aimed to study experimental and theoretical approaches for searching effective local training rules for unsupervised pattern recognition by high-performance memristor-based Spiking Neural Networks (SNNs). First, the possibility of weight
Autor:
Andrey V. Emelyanov, A. A. Minnekhanov, Sergey Nikolaev, V. V. Rylkov, A. V. Sitnikov, A. N. Matsukatova, A. S. Vedeneev, K. Yu. Chernoglazov, V. A. Levanov, K. E. Nikiruy, A. S. Bugaev
Publikováno v:
Journal of Communications Technology and Electronics. 65:1198-1203
The resistive switching (RS) of metal/nanocomposite/metal (M/NC/M) memristive structures based on the (Co40Fe40B20)x(LiNbO3)100 – x nanocomposite with a ferromagnetic alloy content х ≈ 8–20 at % is studied. The structures were synthesized by i
Autor:
V. V. Rylkov, A. A. Minnekhanov, A. N. Matsukatova, Vyacheslav A. Demin, Pavel A. Forsh, Pavel K. Kashkarov, Andrey V. Emelyanov
Publikováno v:
JETP Letters. 112:357-363
Effects of second-order resistive switching in memristors based on poly-p-xylylene have been detected for the first time. It has been shown that these memristive structures constitute a dynamic system whose behavior significantly depends on second-or
Autor:
Vyacheslav A. Demin, V. V. Rylkov, Andrey V. Emelyanov, K. E. Nikiruy, A. V. Sitnikov, A. I. Iliasov
Publikováno v:
Physics of the Solid State. 62:1732-1735
The memristive properties of layered capacitor structures based on a (Co40Fe40B20)x(LiNbO3)100 – x nanocomposite and LiNbO3 with thicknesses of 10 and 40 nm, respectively, are studied. There was a sharp transition from a single-filament to multi-fi