Zobrazeno 1 - 10
of 123
pro vyhledávání: '"Andrew T. Walden"'
Autor:
Donald B. Percival, Andrew T. Walden
Publikováno v:
Spectral Analysis for Univariate Time Series ISBN: 9781139235723
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f8f876ef8f207204be9b0d77ef3bcf02
https://doi.org/10.1017/9781139235723.009
https://doi.org/10.1017/9781139235723.009
Autor:
Andrew T. Walden, Donald B. Percival
Publikováno v:
Spectral Analysis for Univariate Time Series ISBN: 9781139235723
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9830fc9fae89c4a25d9300f7d762f76e
https://doi.org/10.1017/9781139235723.007
https://doi.org/10.1017/9781139235723.007
Autor:
Andrew T. Walden, L. Zhuang
Publikováno v:
Journal of Applied Statistics. 46:1107-1128
Graphical analysis of complex brain networks is a fundamental area of modern neuroscience. Functional connectivity is important since many neurological and psychiatric disorders, including schizophrenia, are described as ‘dys-connectivity’ syndro
Autor:
L. Zhuang, Andrew T. Walden
Publikováno v:
IEEE Transactions on Signal Processing. 65:4551-4561
The space of covariance matrices is a non-Euclidean space. The matrices form a manifold which if equipped with a Riemannian metric becomes a Riemannian manifold, and recently this idea has been used for comparison and clustering of complex valued spe
Autor:
Johannes F. Lutzeyer, Andrew T. Walden
Publikováno v:
Complex Networks and Their Applications VIII ISBN: 9783030366827
COMPLEX NETWORKS (2)
COMPLEX NETWORKS (2)
Typically network structures are represented by one of three different graph shift operator matrices: the adjacency matrix and unnormalised and normalised Laplacian matrices. To enable a sensible comparison of their spectral (eigenvalue) properties,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d081515b010ad6e05dd6d1a7f57ef3fa
https://doi.org/10.1007/978-3-030-36683-4_16
https://doi.org/10.1007/978-3-030-36683-4_16
Autor:
Z. Leong, Andrew T. Walden
We examine Fourier transforms of real-valued stationary time series from the point of view of the statistical propriety. Processes with a large dynamic range spectrum have transforms that are very significantly improper for some frequencies; the real
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a60cc96cc71138bee50cf1a543dc4e1f
http://hdl.handle.net/10044/1/62127
http://hdl.handle.net/10044/1/62127
Autor:
Andrew T. Walden, P. Ginzberg
Publikováno v:
IEEE Transactions on Signal Processing. 61:154-158
Quaternion vector autoregression (VAR) modeling is a natural extension of real and complex VAR. We demonstrate how a quaternion VAR can be treated as a special case of structured real VAR. We show that generalized least squares and (under Gaussianity