Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Andrew P. Mullhaupt"'
Autor:
Jaehyung Choi, Andrew P. Mullhaupt
Publikováno v:
Entropy, Vol 17, Iss 4, Pp 1581-1605 (2015)
We prove the correspondence between the information geometry of a signal filter and a Kähler manifold. The information geometry of a minimum-phase linear system with a finite complex cepstrum norm is a Kähler manifold. The square of the complex cep
Externí odkaz:
https://doaj.org/article/da35104975594232b2a827c2f9edd0d1
Autor:
Jaehyung Choi, Andrew P. Mullhaupt
Publikováno v:
Entropy, Vol 17, Iss 3, Pp 1347-1357 (2015)
We construct geometric shrinkage priors for Kählerian signal filters. Based on the characteristics of Kähler manifolds, an efficient and robust algorithm for finding superharmonic priors which outperform the Jeffreys prior is introduced. Several an
Externí odkaz:
https://doaj.org/article/9afa5effdb29486dbbeef973ac241b64
Autor:
Glenn T. Werneburg, Eric A. Werneburg, Howard B. Goldman, Andrew P. Mullhaupt, Sandip P. Vasavada
Publikováno v:
International Urogynecology Journal. 34:1009-1016
Autor:
Glenn T. Werneburg, Eric A. Werneburg, Howard B. Goldman, Andrew P. Mullhaupt, Sandip P. Vasavada
Publikováno v:
Neurourology and Urodynamics. 41
Autor:
Glenn T. Werneburg, Eric A. Werneburg, Howard B. Goldman, Andrew P. Mullhaupt, Sandip P. Vasavada
Publikováno v:
Neurourology and urodynamicsREFERENCES. 41(3)
The increasing wealth of clinical data may become unmanageable for a physician to assimilate into optimal decision-making without assistance. Utilizing a novel machine learning (ML) approach, we sought to develop algorithms to predict patient outcome
Autor:
Kurt S. Riedel, Andrew P. Mullhaupt
An input pair $(A,B)$ is triangular input normal if and only if $A$ is triangular and $AA^* + BB^* = I_n$, where $I_n$ is theidentity matrix. Input normal pairs generate an orthonormal basis for the impulse response. Every input pair may be transform
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5bdd11059abf565917b9aca44fb8cbd5
Autor:
Andrew P. Mullhaupt, Jaehyung Choi
Publikováno v:
Entropy, Vol 17, Iss 3, Pp 1347-1357 (2015)
Entropy
Volume 17
Issue 3
Pages 1347-1357
Entropy
Volume 17
Issue 3
Pages 1347-1357
We construct geometric shrinkage priors for K\"ahlerian signal filters. Based on the characteristics of K\"ahler manifolds, an efficient and robust algorithm for finding superharmonic priors which outperform the Jeffreys prior is introduced. Several
Autor:
Andrew P. Mullhaupt, Jaehyung Choi
We review the information geometry of linear systems and its application to Bayesian inference, and the simplification available in the K\"ahler manifold case. We find conditions for the information geometry of linear systems to be K\"ahler, and the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e432aad69bf091b3e1f22a01dc8e4d57
http://arxiv.org/abs/1409.4398
http://arxiv.org/abs/1409.4398
Autor:
Jaehyung Choi, Andrew P. Mullhaupt
Publikováno v:
Entropy, Vol 17, Iss 4, Pp 1581-1605 (2015)
Entropy
Volume 17
Issue 4
Pages 1581-1605
Entropy
Volume 17
Issue 4
Pages 1581-1605
We prove the correspondence between the information geometry of a signal filter and a K\"ahler manifold. The information geometry of a minimum-phase linear system with a finite complex cepstrum norm is a K\"ahler manifold. The square of the complex c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f7565f406fef893d7f1958ac94c8aeb1
http://arxiv.org/abs/1404.2006
http://arxiv.org/abs/1404.2006
Autor:
Andrew P. Mullhaupt, Kurt S. Riedel
Publikováno v:
IEEE Transactions on Signal Processing. 45:2616-2619
The adaptive identification of the impulse response of an innovation filter is considered. The impulse response is a finite sum of known basis functions with unknown coefficients. These unknown coefficients are estimated using a pseudolinear regressi