Zobrazeno 1 - 10
of 101
pro vyhledávání: '"Andrew M. Soward"'
Publikováno v:
Journal of Fluid Mechanics
Journal of Fluid Mechanics, Cambridge University Press (CUP), 2021, 915, pp.A53. ⟨10.1017/jfm.2020.1183⟩
Journal of Fluid Mechanics, Cambridge University Press (CUP), 2021, 915, pp.A53. ⟨10.1017/jfm.2020.1183⟩
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::17fa0618ed883ac5b8004cf6f26ffa48
https://hal-insu.archives-ouvertes.fr/insu-03175544
https://hal-insu.archives-ouvertes.fr/insu-03175544
Publikováno v:
Journal of Fluid Mechanics
Journal of Fluid Mechanics, Cambridge University Press (CUP), 2020, 888 (10 April), pp.A9. ⟨10.1017/jfm.2019.1064⟩
Journal of Fluid Mechanics, Cambridge University Press (CUP), 2020, 888 (10 April), pp.A9. ⟨10.1017/jfm.2019.1064⟩
International audience; In a previous paper, Oruba et al. (J. Fluid Mech., vol. 818, 2017, pp. 205-240) considered the 'primary' quasi-steady geostrophic (QG) motion of a constant density fluid of viscosity ⌫ that occurs during linear spin-down in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::610d752fa7a03911a1b791aa8afc910b
https://hal-insu.archives-ouvertes.fr/insu-02470932/file/Oruba_Soward_Dormy_2020.pdf
https://hal-insu.archives-ouvertes.fr/insu-02470932/file/Oruba_Soward_Dormy_2020.pdf
Autor:
Andrew M. Soward
Publikováno v:
Advances in Nonlinear Dynamos ISBN: 9780203493137
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d1234212393f5118895e94a44ea15d95
https://doi.org/10.1201/9780203493137-8
https://doi.org/10.1201/9780203493137-8
Publikováno v:
Journal of Fluid Mechanics. 803:395-435
The steady incompressible viscous flow in the wide gap between spheres rotating rapidly about a common axis at slightly different rates (small Rossby number) has a long and celebrated history. The problem is relevant to the dynamics of geophysical an
Autor:
Andrew M. Soward, Andrew P. Bassom
Publikováno v:
Geophysical & Astrophysical Fluid Dynamics. 110:166-197
Recent studies of plane parallel flows have emphasised the importance of finite-amplitude self-sustaining processes for the existence of alternative non-trivial solutions. The idea behind these mechanisms is that the motion is composed of distinct st
Autor:
Andrew M. Soward, Paul H. Roberts
Publikováno v:
Geophysical & Astrophysical Fluid Dynamics. 108:269-322
The Hybrid Euler–Lagrange (HEL) approach has been usefully applied to weakly dissipative systems characterised by waves riding on mean flow. Soward (Phil. Trans. R. Soc. Lond. A 1972, 272, 431) showed how the HEL-formulation could elucidate remarka
Publikováno v:
Geophysical & Astrophysical Fluid Dynamics. 107:667-714
Asymptotic methods are used to study a one-dimensional kinematic -Parker dynamo wave model in the limit when the strength of the -sources, as measured by the dynamo number , is large. The model includes the influence of meridional circulation with a
Publikováno v:
Journal of Fluid Mechanics
Journal of Fluid Mechanics, Cambridge University Press (CUP), 2017, 818, pp.205-240. ⟨10.1017/jfm.2017.134⟩
Journal of Fluid Mechanics, Cambridge University Press (CUP), 2017, 818, pp.205-240. ⟨10.1017/jfm.2017.134⟩
A comprehensive study of the classical linear spin-down of a constant density viscous fluid (kinematic viscosity \nu) rotating rapidly (angular velocity \Omega) inside an axisymmetric cylindrical container (radius L, height H) with rigid boundaries,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9dba51b7b1637943aac7a81c2f34dc87
Publikováno v:
Journal of Fluid Mechanics. 689:376-416
A Boussinesq fluid of kinematic velocity$\nu $and thermal diffusivity$\kappa $is confined within a rapidly rotating shell with inner and outer sphere boundary radii${ r}_{i}^{\ensuremath{\ast} } $and${ r}_{o}^{\ensuremath{\ast} } $, respectively. The
Autor:
Paul H. Roberts, Andrew M. Soward
Publikováno v:
Journal of Fluid Mechanics. 661:45-72
The hybrid Euler–Lagrange (HEL) description of fluid mechanics, pioneered largely by Andrews & McIntyre (J. Fluid Mech., vol. 89, 1978, pp. 609–646), has had to face the fact, in common with all Lagrangian descriptions of fluid motion, that the v