Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Andrew J. Ballard"'
Autor:
Ellen Clancy, John M. Jumper, Simon A. A. Kohl, Pushmeet Kohli, Andrew Cowie, Andrew J. Ballard, David Reiman, Gerard J. Kleywegt, Agata Laydon, Ewan Birney, Alexander Pritzel, Clemens Meyer, Michal Zielinski, Alex Bridgland, Stig Petersen, Jonas Adler, Tim Green, Michael Figurnov, Alex Bateman, Russell Bates, Zachary Wu, Andrew W. Senior, Stanislav Nikolov, Demis Hassabis, Koray Kavukcuoglu, Sameer Velankar, Bernardino Romera-Paredes, Augustin Žídek, Kathryn Tunyasuvunakool, R. D. Jain, Olaf Ronneberger, Richard Evans, Anna Potapenko
Publikováno v:
Nature
Protein structures can provide invaluable information, both for reasoning about biological processes and for enabling interventions such as structure-based drug development or targeted mutagenesis. After decades of effort, 17% of the total residues i
Autor:
Tamas Berghammer, Martin Steinegger, Anna Potapenko, R. D. Jain, Olaf Ronneberger, John M. Jumper, Russell Bates, David Silver, Simon A. A. Kohl, Tim Green, Michael Figurnov, Andrew J. Ballard, Oriol Vinyals, Michal Zielinski, Stig Petersen, Jonas Adler, Alex Bridgland, Trevor Back, Alexander Pritzel, Michalina Pacholska, Ellen Clancy, Koray Kavukcuoglu, Kathryn Tunyasuvunakool, Stanislav Nikolov, Andrew W. Senior, Demis Hassabis, Clemens Meyer, Richard Evans, David Reiman, Augustin Žídek, Andrew Cowie, Pushmeet Kohli, Bernardino Romera-Paredes
Publikováno v:
Proteins. 89(12)
We describe the operation and improvement of AlphaFold* , the system that was entered by the team AlphaFold2 to the "human" category in the 14th Critical Assessment of Protein Structure Prediction (CASP14). The AlphaFold system entered in CASP14 is e
Autor:
null John Jumper, null Richard Evans, null Alexander Pritzel, null Tim Green, null Michael Figurnov, null Olaf Ronneberger, null Kathryn Tunyasuvunakool, null Russ Bates, null Augustin Žídek, null Anna Potapenko, null Alex Bridgland, null Clemens Meyer, null Simon A. A. Kohl, null Andrew J. Ballard, null Andrew Cowie, null Bernardino Romera‐Paredes, null Stanislav Nikolov, null Rishub Jain, null Jonas Adler, null Trevor Back, null Stig Petersen, null David Reiman, null Ellen Clancy, null Michal Zielinski, null Martin Steinegger, null Michalina Pacholska, null Tamas Berghammer, null David Silver, null Oriol Vinyals, null Andrew W. Senior, null Koray Kavukcuoglu, null Pushmeet Kohli, null Demis Hassabis
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::47b8bd5303b88aa1248b496ff3f8336c
https://doi.org/10.1002/prot.26257/v2/response1
https://doi.org/10.1002/prot.26257/v2/response1
Autor:
John M. Jumper, Pushmeet Kohli, Andrew J. Ballard, Kathryn Tunyasuvunakool, Bernardino Romera-Paredes, Simon A. A. Kohl, Andrew W. Senior, Alexander Pritzel, Sebastian Bodenstein, Ellen Clancy, Michalina Pacholska, Trevor Back, Clemens Meyer, Stanislav Nikolov, Richard O. Evans, Oriol Vinyals, Alex Bridgland, Demis Hassabis, Tamas Berghammer, Michal Zielinski, Stig Petersen, Jonas Adler, Michael Figurnov, Anna Potapenko, Andrew Cowie, David Reiman, Augustin Žídek, Tim Green, Russell Bates, David L. Silver, Koray Kavukcuoglu, R. D. Jain, Olaf Ronneberger, Martin Steinegger
Publikováno v:
Nature
Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort1–4, the structures of around 100,000 unique proteins have been determined5, but
Autor:
Peter Wirnsberger, George Papamakarios, Borja Ibarz, Sébastien Racanière, Andrew J Ballard, Alexander Pritzel, Charles Blundell
Publikováno v:
Machine Learning: Science and Technology. 3:025009
We present a machine-learning approach, based on normalizing flows, for modelling atomic solids. Our model transforms an analytically tractable base distribution into the target solid without requiring ground-truth samples for training. We report Hel
Autor:
Andrew J. Ballard, Alexander Pritzel, Charles Blundell, Stuart Abercrombie, Sébastien Racanière, Peter Wirnsberger, George Papamakarios, Danilo Jimenez Rezende
Publikováno v:
The Journal of chemical physics. 153(14)
Free energy perturbation (FEP) was proposed by Zwanzig more than six decades ago as a method to estimate free energy differences, and has since inspired a huge body of related methods that use it as an integral building block. Being an importance sam
Autor:
Robert McDermott, Oleg A. Mukhanov, Matthew Hutchings, Daniel Yohannes, A. Opremcak, Igor V. Vernik, Jason Walter, Andrew J. Ballard, Britton Plourde, Kenneth Dodge, Alex F. Kirichenko, C. H. Liu, Caleb Howington
Publikováno v:
2019 IEEE International Electron Devices Meeting (IEDM).
An approach for scalable quantum computing infrastructure based on the use of low-power digital superconducting single flux quantum (SFQ) circuits is described. Rather than replicating the room-temperature microwave control and measurement infrastruc
Publikováno v:
Wiley Interdisciplinary Reviews: Computational Molecular Science. 5:273-289
We review a number of recently developed strategies for enhanced sampling of complex systems based on knowledge of the potential energy landscape. We describe four approaches, replica exchange, Kirkwood sampling, superposition-enhanced nested samplin
Autor:
Andrew J, Ballard, Ritankar, Das, Stefano, Martiniani, Dhagash, Mehta, Levent, Sagun, Jacob D, Stevenson, David J, Wales
Publikováno v:
Physical chemistry chemical physics : PCCP. 19(20)
Machine learning techniques are being increasingly used as flexible non-linear fitting and prediction tools in the physical sciences. Fitting functions that exhibit multiple solutions as local minima can be analysed in terms of the corresponding mach
Methods developed to explore and characterise potential energy landscapes are applied to the corresponding landscapes obtained from optimisation of a cost function in machine learning. We consider neural network predictions for the outcome of local g
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5c4aa2095a74c19aa8d3f2aab846ca24
https://www.repository.cam.ac.uk/handle/1810/254523
https://www.repository.cam.ac.uk/handle/1810/254523