Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Andrew D. Pollington"'
Let $F \subseteq [0,1]$ be a set that supports a probability measure $��$ with the property that $ |\widehat��(t)| \ll (\log |t|)^{-A}$ for some constant $ A > 0 $. Let $\mathcal{A}= (q_n)_{n\in \mathbb{N}} $ be a sequence of natural numbers.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::05a91b95f0ddade706fee1e1c2b60e42
https://eprints.whiterose.ac.uk/170428/1/InhomM_0sv.pdf
https://eprints.whiterose.ac.uk/170428/1/InhomM_0sv.pdf
Autor:
Andrew D. Pollington, William Moran
Publikováno v:
Number Theory with an Emphasis on the Markoff Spectrum
The Hurwitz equations, Arthur Baragar best approximation of real numbers by pisot numbers, David W. Boyd some metric properties of sum sets, Gavin Brown and Qing-He Yin computing endpoints in Markoff spectra, Richard T. Burnby badly approximable syst
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a687be45484c127690079d5d6fb8c627
https://doi.org/10.1201/9780203747018
https://doi.org/10.1201/9780203747018
Publikováno v:
Number Theory with an Emphasis on the Markoff Spectrum
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1123e8bb0f95d792bf8106445d33cbe5
https://doi.org/10.1201/9780203747018-11
https://doi.org/10.1201/9780203747018-11
Autor:
Andrew D. Pollington
Publikováno v:
Number Theory with an Emphasis on the Markoff Spectrum
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::27b978908868eb82ac07605c12fb0f86
https://doi.org/10.1201/9780203747018-18
https://doi.org/10.1201/9780203747018-18
Publikováno v:
Mathematische Annalen. 353:259-273
Given a nonnegative function $${\psi\mathbb{N} \to \mathbb{R}}$$ , let W(ψ) denote the set of real numbers x such that |nx − a| 0). A consequence of our main result is that W(ψ) is of full Lebesgue measure if there exists an $${\epsilon > 0}$$ su
Autor:
Andrew D. Pollington, Sanju Velani
Publikováno v:
Selecta Mathematica. 11:297-307
Let W(ψ) denote the set of ψ-well approximable points in \(\mathbb{R}^{d} \) and let K be a compact subset of \(\mathbb{R}^{d} \) which supports a measure μ. In this short article, we show that if μ is an ‘absolutely friendly’ measure and a c
Publikováno v:
Journal of Fourier Analysis and Applications. 8:427-442
Autor:
Sanju Velani, Andrew D. Pollington
Publikováno v:
Journal of the London Mathematical Society. 66:29-40
For any pair $i,j\ge 0$ with $i+j=1$ let ${\mathbf Bad}(i,j)$ denote the set of pairs $(\alpha,\beta)\in {\bb R}^2$ for which $\max\{\|q\alpha\|^{1/i}\|q\beta\|^{1/j}\}>c/q$ for all $q\in {\bb N}$ . Here $c=c(\alpha,\beta)$ is a positive constant. If
Autor:
Andrew D. Pollington, William Moran
Publikováno v:
Israel Journal of Mathematics. 100:339-347
In a previous paper, [7], the authors together with Gavin Brown gave a complete description of the values ofθ, r ands for which numbers normal in baseθ r are normal in baseθ s . Hereθ is some real number greater than 1 andx is normal in baseθ if