Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Andrejić, Vladica"'
Autor:
Andrejić, Vladica, Lukić, Katarina
We introduce a new potential characterization of Osserman algebraic curvature tensors. An algebraic curvature tensor is Jacobi-orthogonal if $\mathcal{J}_XY\perp\mathcal{J}_YX$ holds for all $X\perp Y$, where $\mathcal{J}$ denotes the Jacobi operator
Externí odkaz:
http://arxiv.org/abs/2308.14851
Autor:
Andrejić, Vladica, Lukić, Katarina
It is well known that the Jacobi operators completely determine the curvature tensor. The question of existence of a curvature tensor for given Jacobi operators naturally arises, which is considered and solved in the previous work. Unfortunately, alt
Externí odkaz:
http://arxiv.org/abs/2209.06882
Autor:
Andrejić, Vladica
Osserman manifolds are a generalization of locally two-point homogeneous spaces. We introduce $k$-root manifolds in which the reduced Jacobi operator has exactly $k$ eigenvalues. We investigate one-root and two-root manifolds as another generalizatio
Externí odkaz:
http://arxiv.org/abs/2009.12834
We present improved algorithms for computing the left factorial residues $!p=0!+1!+...+(p-1)! \!\mod p$. We use these algorithms for the calculation of the residues $!p\!\mod p$, for all primes $p$ up to $2^{40}$. Our results confirm that Kurepa's le
Externí odkaz:
http://arxiv.org/abs/1904.09196
Autor:
Andrejić, Vladica, Lukić, Katarina
We consider pseudo-Riemannian generalizations of Osserman, Clifford, and the duality principle properties for algebraic curvature tensors and investigate relations between them. We introduce quasi-Clifford curvature tensors using a generalized Cliffo
Externí odkaz:
http://arxiv.org/abs/1805.05406
Autor:
Andrejić, Vladica
Publikováno v:
In Journal of Geometry and Physics June 2022 176
Autor:
Andrejić, Vladica, Tatarevic, Milos
Publikováno v:
Publ. Inst. Math., Nouv. S\'er. 100 (2016), 101-106
We investigate the existence of primes $p > 5$ for which the residues of $2!$, $3!$, \dots, $(p-1)!$ modulo $p$ are all distinct. We describe the connection between this problem and Kurepa's left factorial function, and report that there are no such
Externí odkaz:
http://arxiv.org/abs/1603.04086
Autor:
Andrejić, Vladica, Tatarevic, Milos
Publikováno v:
Mathematics of Computation 85 (2016), 3061-3068
Kurepa's conjecture states that there is no odd prime $p$ that divides $!p=0!+1!+\cdots+(p-1)!$. We search for a counterexample to this conjecture for all $p<2^{34}$. We introduce new optimization techniques and perform the computation using graphics
Externí odkaz:
http://arxiv.org/abs/1409.0800
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Andrejić, Vladica, Tatarevic, Milos
Publikováno v:
Mathematics of Computation, 2016 Nov 01. 85(302), 3061-3068.
Externí odkaz:
https://www.jstor.org/stable/mathcomp.85.302.3061