Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Andrei V Zemskov"'
Publikováno v:
Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki, Vol 26, Iss 1, Pp 62-78 (2022)
A polar-symmetric elastic diffusion problem is considered for an orthotropic multicomponent homogeneous cylinder under uniformly distributed radial unsteady volumetric perturbations. Coupled elastic diffusion equations in a cylindrical coordinate sys
Externí odkaz:
https://doaj.org/article/0fdce56db7ab4fe28d90e554e0838151
Publikováno v:
Advanced Structured Materials ISBN: 9783031220920
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::172fed0cddade8e924ca510c59f8e709
https://doi.org/10.1007/978-3-031-22093-7_9
https://doi.org/10.1007/978-3-031-22093-7_9
Publikováno v:
Mathematical and Computational Applications, Vol 24, Iss 1, p 26 (2019)
This article presents an algorithm for solving the unsteady problem of one-dimensional coupled thermoelastic diffusion perturbations propagation in a multicomponent isotropic half-space, as a result of surface and bulk external effects. One-dimension
Externí odkaz:
https://doaj.org/article/377850cdf36d4673bdbf83b51553a437
Publikováno v:
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 102
Publikováno v:
Problems of strenght and plasticity. 82:156-167
We considered the one-dimensional polar-symmetric problem of stress-strain state determining of a continuum isotropic multicomponent cylinder. The cylinder is affected by unsteady surface elastic diffusive perturbations. The coupled system of elastic
Autor:
D. V. Tarlakovskii, Andrei V. Zemskov
Publikováno v:
14th WCCM-ECCOMAS Congress.
Publikováno v:
9th edition of the International Conference on Computational Methods for Coupled Problems in Science and Engineering.
Publikováno v:
Multiscale Solid Mechanics ISBN: 9783030549275
The unsteady vibrations problem of a simply supported Euler–Bernoulli beam under the distributed transverse load is considered. For the mathematical problem formulation, we use the system of a beam deflections equations with inner diffusion process
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::791916b13fad74ffd3ecb347a4a32b83
https://doi.org/10.1007/978-3-030-54928-2_36
https://doi.org/10.1007/978-3-030-54928-2_36
Autor:
Andrei V. Zemskov, D. V. Tarlakovskii
Publikováno v:
Advanced Structured Materials ISBN: 9783030387075
We study unsteady oscillations of a Timoshenko beam considering mass transfer. In a general case, the beam is subjected to tensile forces, bending moments and shear forces applied to its ends. Densities of diffusion fluxes are also defined at the end
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c722d8a90a256917048f9bd6db49d15f
https://doi.org/10.1007/978-3-030-38708-2_27
https://doi.org/10.1007/978-3-030-38708-2_27
Autor:
Andrei V. Zemskov, D. V. Tarlakovskii
Publikováno v:
Mathematical and Computational Applications
Volume 24
Issue 1
Mathematical and Computational Applications, Vol 24, Iss 1, p 23 (2019)
Volume 24
Issue 1
Mathematical and Computational Applications, Vol 24, Iss 1, p 23 (2019)
This article considers an unsteady elastic diffusion model of Euler&ndash
Bernoulli beam oscillations in the presence of diffusion flux relaxation. We used the model of coupled elastic diffusion for a homogeneous orthotropic multicomponent conti
Bernoulli beam oscillations in the presence of diffusion flux relaxation. We used the model of coupled elastic diffusion for a homogeneous orthotropic multicomponent conti