Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Andrei E. Ghenciu"'
Autor:
Andrei E. Ghenciu, Sara Munday
Publikováno v:
Journal of Number Theory. 228:359-374
In this paper, we look at a family of Renyi-like continued fraction expansions and the associated conformal iterated function systems. We show that for every k ≥ 2 , every such associated system has full Hausdorff dimension spectrum. We construct t
Publikováno v:
Journal of Number Theory. 175:223-249
In this paper, we consider two dynamical systems associated to the nearest integer continued fraction, and show that both of them have full Hausdorff dimension spectrum.
Publikováno v:
Journal of Fractal Geometry. 3:217-243
Autor:
Simon Baker, Andrei E. Ghenciu
Publikováno v:
Journal of Mathematical Analysis and Applications. 430:633-647
We study the dynamical properties of certain shift spaces. To help study these properties we introduce two new classes of shifts, namely boundedly supermultiplicative (BSM) shifts and balanced shifts. It turns out that any almost specified shift is b
Autor:
Mario Roy, Andrei E. Ghenciu
Publikováno v:
Fundamenta Mathematicae. 221:231-265
Autor:
Andrei E. Ghenciu
Publikováno v:
Real Anal. Exchange 34, no. 1 (2008), 17-28
To the Gauss-like continued fraction expansions we associate a conformal iterated function system whose limit set is of Lebesgue measure equal to 1. We show that the Texan Conjecture holds; i.e. for every $t \in [0,1]$ there exists a subsystem whose
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::44e956f92942b32a28da36aabb745b01
http://projecteuclid.org/euclid.rae/1242738917
http://projecteuclid.org/euclid.rae/1242738917
Autor:
Andrei E. Ghenciu, Mario Roy
Publikováno v:
Real Analysis Exchange. 40:99
We study shift-generated finite conformal constructions; i.e., conformal constructions generated by a general shift (shift of finite type, sofic shift and non-sofic shift alike) over a finite alphabet. These constructions are not restricted to shifts