Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Andreas Weingartner"'
Autor:
Andreas Weingartner
Publikováno v:
Proceedings of the American Mathematical Society. 149:4699-4708
We extend the Siegel-Walfisz theorem to a family of integer sequences that are characterized by constraints on the size of the prime factors. Besides prime powers, this family includes smooth numbers, almost primes and practical numbers.
11 page
11 page
Autor:
Montserrat BATLLE RIBAS, Thomas BERNARD, Eyal BRILL, Maria Rosario COELHO, Maria Fátima COIMBRA, Jochen DEUERLEIN, Peter GATTINESI, Philipp HOHENBLUM, Pierre PIERONNE, Jordi RAICH, Luís SIMAS, Rui TEIXEIRA, Rita UGARELLI, Andreas WEINGARTNER, Monica CARDARILLI, Georgios GIANNOPOULOS
Publikováno v:
Techniques d'analyse.
Autor:
Andreas Weingartner
Publikováno v:
International Journal of Number Theory. 16:629-638
An integer $n\ge 1$ is said to be practical if every natural number $ m \le n$ can be expressed as a sum of distinct positive divisors of $n$. The number of practical numbers up to $x$ is asymptotic to $c x/\log x$, where $c$ is a constant. In this n
Autor:
Andreas Weingartner
We show that for integers $n$, whose ratios of consecutive divisors are bounded above by an arbitrary constant, the normal order of the number of prime factors is $C \log \log n$, where $C=(1-e^{-\gamma})^{-1} = 2.280...$ and $\gamma$ is Euler's cons
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a0124ac4625542d3e6d1f64f310a664d
http://arxiv.org/abs/2101.11585
http://arxiv.org/abs/2101.11585
Publikováno v:
Finite Fields and Their Applications. 44:22-33
Given a polynomial g of positive degree over a finite field, we show that the proportion of polynomials of degree n, which can be written as h + g k , where h is an irreducible polynomial of degree n and k is a nonnegative integer, has order of magni
Autor:
Andreas Weingartner, Carl Pomerance
A number $n$ is practical if every integer in $[1,n]$ can be expressed as a subset sum of the positive divisors of $n$. We consider the distribution of practical numbers that are also shifted primes, improving a theorem of Guo and Weingartner. In add
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a1bf2e3ce20516f3eef77c8d76923c6d
Autor:
Andreas Weingartner
Publikováno v:
Mathematika. 63:213-229
Let $\theta$ be an arithmetic function and let $\mathcal{B}$ be the set of positive integers $n=p_1^{\alpha_1} \cdots p_k^{\alpha_k}$, which satisfy $p_{j+1} \le \theta ( p_1^{\alpha_1}\cdots p_{j}^{\alpha_{j}})$ for $0\le j < k$. We show that $\math
Autor:
Joshua Culver, Andreas Weingartner
We give an asymptotic estimate for the number of partitions of a set of $n$ elements, whose block sizes avoid a given set $\mathcal{S}$ of natural numbers. As an application, we derive an estimate for the number of partitions of a set with $n$ elemen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::96e50bd4420a4ce8a9419b9ce18d6157
http://arxiv.org/abs/1806.02316
http://arxiv.org/abs/1806.02316
Autor:
Andreas Weingartner
We establish formulas for the constant factor in several asymptotic estimates related to the distribution of integer and polynomial divisors. The formulas are then used to approximate these factors numerically.
22 pages, 5 tables
22 pages, 5 tables
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c3025ab928a76a4ab17206af4b87d41c
http://arxiv.org/abs/1705.06349
http://arxiv.org/abs/1705.06349
Autor:
Andreas Weingartner
Publikováno v:
Journal of Number Theory. 142:211-222