Zobrazeno 1 - 10
of 228
pro vyhledávání: '"Andreas Holmsen"'
Autor:
Lindemann, Rolf
Publikováno v:
VSWG: Vierteljahrschrift für Sozial- und Wirtschaftsgeschichte, 1981 Jan 01. 68(3), 441-442.
Externí odkaz:
https://www.jstor.org/stable/20734123
Autor:
Lindemann, Rolf
Publikováno v:
VSWG: Vierteljahrschrift für Sozial- und Wirtschaftsgeschichte, 1983 Jan 01. 70(3), 415-415.
Externí odkaz:
https://www.jstor.org/stable/20731829
Autor:
Davies, Margaret
Publikováno v:
The Agricultural History Review, 1959 Jan 01. 7(1), 56-56.
Externí odkaz:
https://www.jstor.org/stable/40272875
Autor:
Tønnesson, Kåre D.
Publikováno v:
The Economic History Review, 1974 Feb 01. 27(1), 156-157.
Externí odkaz:
https://www.jstor.org/stable/2594237
Publikováno v:
Discrete & Computational Geometry. 38:243-257
We extend to topological affine planes the standard theorems of convexity, among them the separation theorem, the anti-exchange theorem, Radon's, Helly's, Caratheodory's, and Kirchberger's theorems, and the Minkowski theorem on extreme points. In a f
Autor:
Andreas Holmsen
Publikováno v:
Discrete & Computational Geometry. 37:341-349
Let F be a family of disjoint translates of a compact convex set in the plane. In 1980 Katchalski and Lewis showed that there exists a constant k, independent of F, such that if each three members of F are met by a line, then a "large" subfamily G
Publikováno v:
advg. 6:301-321
In 1940, Luis Santaló proved a Helly-type theorem for line transversals to boxes in ℝ d . An analysis of his proof reveals a convexity structure for ascending lines in ℝ d that is isomorphic to the ordinary notion of convexity in a convex subset
Autor:
Andreas Holmsen, Jirí Matousek
Publikováno v:
Discrete and Computational Geometry. 31:405-410
For each $n>2$ we construct a convex body $K\subset {\Bbb R}^3$ and a finite family ${\cal F}$ of disjoint translates of $K$ such that any $n-1$ members ${\cal F}$ admit a line transversal, but ${\cal F}$ has no line transversal.
Autor:
Andreas Holmsen
Publikováno v:
Discrete and Computational Geometry. 29:395-408
In 1980 Katchalski and Lewis showed the following: if each three members of a family of disjoint translates in the plane are met by a line, then there exists a line meeting all but at most k members of F, where k is some positive constant independent