Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Andreas Henrici"'
Publikováno v:
Frontiers in Artificial Intelligence, Vol 6 (2023)
Externí odkaz:
https://doaj.org/article/0aedc2e91f0b4126b234662d9754723a
Autor:
Giulia Fischetti, Nicolas Schmid, Simon Bruderer, Guido Caldarelli, Alessandro Scarso, Andreas Henrici, Dirk Wilhelm
Publikováno v:
Frontiers in Artificial Intelligence, Vol 5 (2023)
The identification and characterization of signal regions in Nuclear Magnetic Resonance (NMR) spectra is a challenging but crucial phase in the analysis and determination of complex chemical compounds. Here, we present a novel supervised deep learnin
Externí odkaz:
https://doaj.org/article/62ec030056664e5b8bd457668fae816e
Autor:
Andreas Henrici, Jörg Osterrieder
Publikováno v:
Frontiers in Artificial Intelligence, Vol 5 (2022)
Externí odkaz:
https://doaj.org/article/f0350722e7de4d9b80475f8aed9fda71
Autor:
Andreas Henrici
Publikováno v:
Symmetry, Vol 10, Iss 10, p 506 (2018)
In this work, we prove a Nekhoroshev-type stability theorem for the Toda lattice with Dirichlet boundary conditions, i.e., with fixed ends. The Toda lattice is a member of the family of Fermi-Pasta-Ulam (FPU) chains, and in view of the unexpected rec
Externí odkaz:
https://doaj.org/article/ed71628f50054b16ad1beb1425cf03b3
Autor:
Andreas Henrici
In this paper, we prove a Nekhoroshev theorem for the Toda lattice with Dirichlet boundary conditions, i.e., fixed ends. The Toda lattice is a special case of a Fermi-Pasta-Ulam (FPU) lattice, and in view of the unexpected recurrence phenomena observ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c2f6fbd12a5b8db7e66121b8fb694f9a
https://hdl.handle.net/11475/16105
https://hdl.handle.net/11475/16105
Autor:
Andreas Henrici, Martin Neukom
In this paper we describe some phenomena arising in the dynamics of a chain of coupled van der Pol oscillators, mainly the synchronisation of the frequencies of these oscillators, and provide some applications of these phenomena in sound synthesis.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::00b18fe00599f502d01dc54f5fc02950
https://hdl.handle.net/11475/16108
https://hdl.handle.net/11475/16108
Autor:
Andreas Henrici
Symmetries of the periodic Toda lattice are expresssed in action-angle coordinates and characterized in terms of the periodic and Dirichlet spectrum of the associated Jacobi matrices. Using these symmetries, the phase space of the lattice with Dirich
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::31b90ab6c3e272f6ccd110189da31ff3
Autor:
Thomas Kappeler, Andreas Henrici
The periodic Toda lattice with $N$ sites is globally symplectomorphic to a two parameter family of $N-1$ coupled harmonic oscillators. The action variables fill out the whole positive quadrant of $\R^{N-1}$. We prove that in the interior of the posit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ecfceb548304330a0349218cc8761d50
http://arxiv.org/abs/0812.4912
http://arxiv.org/abs/0812.4912
Autor:
Andreas Henrici, Thomas Kappeler
Publikováno v:
International Mathematics Research Notices. 2008
Autor:
Thomas Kappeler, Andreas Henrici
In this paper we prove, among other results, that near the equilibirum position, any periodic FPU chain with an odd number N of particles admits a Birkhoff normal form up to order 4, whereas any periodic FPU chain with N even admits a resonant normal
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::49380e4d4a24f7e080c2cd69b55ea6d2