Zobrazeno 1 - 10
of 39
pro vyhledávání: '"Andreas Höring"'
Publikováno v:
Journal of the London Mathematical Society. 106:27-59
Autor:
Andreas Höring, Fabrizio Anella
Publikováno v:
Journal de l’École polytechnique — Mathématiques. 8:1429-1457
Autor:
Andreas Höring
Publikováno v:
Известия Российской академии наук. Серия математическая. 85:215-224
Дается ответ на вопрос Филипа и Тозатти, касающийся теоремы о свободе от базисных точек для трансцендентных $(1,1)$-классов на компактных т
Autor:
Junyan Cao, Andreas Höring
Publikováno v:
Journal of Algebraic Geometry
Journal of Algebraic Geometry, American Mathematical Society, 2019, 28 (3), pp.567-597. ⟨10.1090/jag/715⟩
Journal of Algebraic Geometry, American Mathematical Society, 2019, 28 (3), pp.567-597. ⟨10.1090/jag/715⟩
Let X X be a simply connected projective manifold with nef anticanonical bundle. We prove that X X is a product of a rationally connected manifold and a manifold with trivial canonical bundle. As an application we describe the MRC-fibration of any pr
Autor:
Andreas Höring, Jie Liu
Let X be a Fano manifold with Picard number one such that the tangent bundle T_X is big. If X admits a rational curve with trivial normal bundle, we show that X is isomorphic to the del Pezzo threefold of degree five.
Comment: 44 pages
Comment: 44 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5c0c2c8dbacef7c5d668dde93dea2124
Autor:
Junyan Cao, Andreas Höring
Publikováno v:
Journal of Differential Geometry
Journal of Differential Geometry, International Press, 2020, 114 (1), pp.1-39. ⟨10.4310/jdg/1577502017⟩
J. Differential Geom. 114, no. 1 (2020), 1-39
Journal of Differential Geometry, International Press, 2020, 114 (1), pp.1-39. ⟨10.4310/jdg/1577502017⟩
J. Differential Geom. 114, no. 1 (2020), 1-39
We present an inductive strategy to show the existence of rational curves on compact Kaehler manifolds which are not minimal models but have a pseudoeffective canonical bundle. The tool for this inductive strategy is a weak subadjunction formula for
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c0d530d319da2d6b3e3ee408a05e605d
https://hal.univ-cotedazur.fr/hal-02529524
https://hal.univ-cotedazur.fr/hal-02529524
Autor:
Thomas Peternell, Andreas Höring
Publikováno v:
Algebraic Geometry: Salt Lake City 2015. :381-402
Autor:
Andreas Höring, Robert Śmiech
Publikováno v:
Mathematical News / Mathematische Nachrichten
Mathematical News / Mathematische Nachrichten, Wiley-VCH Verlag, 2019, 293 (1), pp.115-119. ⟨10.1002/mana.201900311⟩
Mathematical News / Mathematische Nachrichten, Wiley-VCH Verlag, 2019, 293 (1), pp.115-119. ⟨10.1002/mana.201900311⟩
We show that any Fano fivefold with canonical Gorenstein singularities has an effective anticanonical divisor. Moreover,if a general element of the anticanonical system is reduced, then it has canonical singularities. We also prove nonvanishing of an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2bd5f3deb2c9d9bf9c2835269d712b46
https://hal.univ-cotedazur.fr/hal-02529541
https://hal.univ-cotedazur.fr/hal-02529541
Autor:
Thomas Dedieu, Andreas Höring
Publikováno v:
Algebraic Geometry
Algebraic Geometry, Foundation Compositio Mathematica, 2017, 4 (1), pp.120-135. ⟨10.14231/AG-2017-006⟩
Algebraic Geometry, 2017, 4 (1), pp.120-135. ⟨10.14231/AG-2017-006⟩
Algebraic Geometry, Foundation Compositio Mathematica, 2017, 4 (1), pp.120-135. ⟨10.14231/AG-2017-006⟩
Algebraic Geometry, 2017, 4 (1), pp.120-135. ⟨10.14231/AG-2017-006⟩
Let X be a Fano manifold such that every rational curve in X has anticanonical degree at least the dimension of X. We prove that X is a projective space or a quadric.
changed metadata to follow new umlaut policy + journal ref. added
changed metadata to follow new umlaut policy + journal ref. added
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b4332ff20baf14883f76e5991279b89e
https://hal.univ-cotedazur.fr/hal-02529535
https://hal.univ-cotedazur.fr/hal-02529535
Autor:
Thomas Peternell, Andreas Höring
Publikováno v:
Inventiones Mathematicae
Inventiones Mathematicae, Springer Verlag, 2019, 216 (2), pp.395-419. ⟨10.1007/s00222-018-00853-2⟩
Inventiones Mathematicae, Springer Verlag, 2019, 216 (2), pp.395-419. ⟨10.1007/s00222-018-00853-2⟩
Given a reflexive sheaf on a mildly singular projective variety, we prove a flatness criterion under certain stability conditions. This implies the algebraicity of leaves for sufficiently stable foliations with numerically trivial canonical bundle su
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d9f9d4dcecbc285bd08561f2dac7a1a7