Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Andrea Medini"'
Publikováno v:
Topology and its Applications. 323:108274
Autor:
Mirna Džamonja, Joan Hart, Andrea Medini, Andrés Villaveces, István Juhász, H. Jerome Keisler, Steffen Lempp, Arnold W Miller, Justin Tatch Moore, Frank Tall, Alan Dow, Michael Hrušák, Jan van Mill, Stephen Jackson, Donald A Martin, Peter Nyikos, Dilip Raghavan, John Steel, Hugh Woodin
Publikováno v:
Notices of the American Mathematical Society. 69:1
Autor:
Andrea Medini
All spaces (and groups) are assumed to be separable and metrizable. Jan van Mill showed that every analytic group $G$ is Effros (that is, every continuous transitive action of $G$ on a non-meager space is micro-transitive). We complete the picture by
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1425189fa4ea6b39d975289ad22160a8
http://arxiv.org/abs/2107.11586
http://arxiv.org/abs/2107.11586
Publikováno v:
University of Vienna-u:cris
All spaces are assumed to be separable and metrizable. We show that, assuming the Axiom of Determinacy, every zero-dimensional homogeneous space is strongly homogeneous (that is, all its non-empty clopen subspaces are homeomorphic), with the trivial
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b759adf816033cade6adde4da7a99406
http://hdl.handle.net/2318/1736803
http://hdl.handle.net/2318/1736803
Publikováno v:
Fundamenta Mathematicae. 231:189-208
We give a consistent example of a zero-dimensional separable metrizable space $Z$ such that every homeomorphism of $Z^\omega$ acts like a permutation of the coordinates almost everywhere. Furthermore, this permutation varies continuously. This shows
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0564916313af7ed5b6b22b39bc13697c
Publikováno v:
Israel Journal of Mathematics, 214(2). Springer New York
We construct a homogeneous subspace of $2^\omega$ whose complement is dense in $2^\omega$ and rigid. Using the same method, assuming Martin's Axiom, we also construct a countable dense homogeneous subspace of $2^\omega$ whose complement is dense in $
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4806f47824e2102d14a708e6f2d8f326
https://dare.uva.nl/personal/pure/en/publications/a-homogeneous-space-whose-complement-is-rigid(d2d98219-5b42-439f-ae79-7d7e8dba5396).html
https://dare.uva.nl/personal/pure/en/publications/a-homogeneous-space-whose-complement-is-rigid(d2d98219-5b42-439f-ae79-7d7e8dba5396).html
Autor:
Andrea Medini
Publikováno v:
Topology and its Applications. 158(18):2520-2527
Building on work of Terada, we prove that h-homogeneity is productive in the class of zero-dimensional spaces. Then, by generalizing a result of Motorov, we show that for every non-empty zero-dimensional space $X$ there exists a non-empty zero-dimens
Autor:
Andrea Medini
Publikováno v:
Topology and its Applications. 157(18):2829-2833
We construct a family of Hausdorff spaces such that every finite product of spaces in the family (possibly with repetitions) is CLP-compact, while the product of all spaces in the family is non-CLP-compact. Our example will yield a single Hausdorff s
Autor:
Andrea Medini, Lyubomyr Zdomskyy
We show that every filter $\mathcal{F}$ on $\omega$, viewed as a subspace of $2^\omega$, is homeomorphic to $\mathcal{F}^2$. This generalizes a theorem of van Engelen, who proved that this holds for Borel filters.
Comment: 4 pages
Comment: 4 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3bf9e14fb84b89fc6d2ad968ee2fd334