Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Andrea M. P. Valli"'
Publikováno v:
Computers & Mathematics with Applications. 98:1-9
This paper presents the numerical analysis for a variant of the nonlinear multiscale Dynamic Diffusion (DD) method for the advection-diffusion-reaction equation initially proposed by Arruda et al. [1] and recently studied by Valli et al. [2] . The ne
Autor:
Regina C. Almeida, Luciana Rodrigues Carvalho Barros, Emanuelle Arantes Paixão, Gustavo Taiji Naozuka, Artur C. Fassoni, Andrea M. P. Valli
Publikováno v:
Cancers, Vol 13, Iss 2941, p 2941 (2021)
Cancers
Volume 13
Issue 12
Cancers
Volume 13
Issue 12
Simple Summary CAR-T cell immunotherapy uses engineered T lymphocytes to recognize cancer antigens and to directly attack cancer cells and have been successfully used against cancers of hematopoietic origin. New CAR designs involving different and mu
Publikováno v:
Computational Science and Its Applications – ICCSA 2021 ISBN: 9783030866525
ICCSA (1)
ICCSA (1)
This paper presents a two-scale finite element formulation for a variant of the nonlinear Dynamic Diffusion (DD) method, applied to advection-diffusion-reaction problems. The approach, named here new-DD method, introduces locally and dynamically an e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7657277d5d148ff03b7a307b6a797780
https://doi.org/10.1007/978-3-030-86653-2_4
https://doi.org/10.1007/978-3-030-86653-2_4
Autor:
Lucia Catabriga, Isaac P. Santos, Alvaro L. G. A. Coutinho, Sandra M. C. Malta, Andrea M. P. Valli, Regina C. Almeida
Publikováno v:
Computers & Mathematics with Applications. 75:307-321
In this paper, we present a two-scale finite element formulation, named Dynamic Diffusion (DD), for advection–diffusion–reaction problems. By decomposing the velocity field in coarse and subgrid scales, the latter is used to determine the smalles
Autor:
Lucia Catabriga, Isaac P. Santos, Sérgio Souza Bento, Leonardo Muniz de Lima, Riedson Baptista, Andrea M. P. Valli
Publikováno v:
Computational Science and Its Applications – ICCSA 2019 ISBN: 9783030243012
ICCSA (3)
ICCSA (3)
In this work we evaluate a Nonlinear Subgrid Stabilization parameter-free method to solve time-independent incompressible Navier-Stokes equations (NSGS-NS) at high Reynolds numbers, considering only the decomposition of the velocity field (not pressu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::85316be52c78ef3a1226ada6994604af
https://doi.org/10.1007/978-3-030-24302-9_11
https://doi.org/10.1007/978-3-030-24302-9_11
Autor:
Isaac P. Santos, Leonardo Muniz de Lima, Riedson Baptista, Sérgio Souza Bento, Andrea M. P. Valli, Lucia Catabriga
Publikováno v:
Computational Science and Its Applications – ICCSA 2018 ISBN: 9783319951645
ICCSA (2)
ICCSA (2)
In this work we present a variational multiscale finite element method for solving the incompressible Navier-Stokes equations. The method is based on a two-level decomposition of the approximation space and consists of adding a residual-based nonline
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ccad95c46f2c738aba52f7d718c73489
https://doi.org/10.1007/978-3-319-95165-2_18
https://doi.org/10.1007/978-3-319-95165-2_18
Autor:
A.L. Rossa, Graham F. Carey, José J. Camata, Andrea M. P. Valli, Alvaro L. G. A. Coutinho, Lucia Catabriga
Publikováno v:
International Journal for Numerical Methods in Fluids. 69:802-823
SUMMARY The effects of reordering the unknowns on the convergence of incomplete factorization preconditioned Krylov subspace methods are investigated. Of particular interest is the resulting preconditioned iterative solver behavior when adaptive mesh
Publikováno v:
International Journal for Numerical Methods in Fluids. 61:1181-1200
SUMMARY A proportional-integral-derivative (PID) control approach is developed, implemented and investigated numerically in conjunction with continuation techniques for nonlinear problems. The associated algorithm uses PID control to adapt parameter
Publikováno v:
Communications in Numerical Methods in Engineering. 24:1941-1952
SUMMARY This work investigates partitioned iterative solution of coupled multiphysics systems including subcycling time-stepping strategies for decoupled subsystems in conjunction with a proportional-integral-derivative feedback control algorithm for
Autor:
Regina C. Almeida, Isaac P. Santos, Lucia Catabriga, Alvaro L. G. A. Coutinho, Andrea M. P. Valli
Publikováno v:
Proceeding Series of the Brazilian Society of Computational and Applied Mathematics.
In this work we evaluate a predictor-multicorrector integration scheme for transient advection-diffusion-reaction problems using the Dynamic Diffusion method (DD). This multiscale finite element formulation results in a free parameter method in which