Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Andrea Ferraguti"'
Autor:
Andrea Ferraguti, Giacomo Micheli
Publikováno v:
Arithmetic of Finite Fields ISBN: 9783031229435
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::292945605cf945cb18aeb5bcc820e9c0
https://hdl.handle.net/11379/571993
https://hdl.handle.net/11379/571993
Autor:
Giacomo Micheli, Andrea Ferraguti
Publikováno v:
Journal of Algebra. 565:691-701
Let q be an odd prime power and n an integer. Let ℓ∈Fqjavax.xml.bind.JAXBElement@3f28d4ca[x] be a q-linearized t-scattered polynomial of linearized degree r. Let d=max{t,r} be an odd prime number. In this paper we show that under these assumpt
Autor:
Andrea Ferraguti, Giacomo Micheli
Publikováno v:
Designs, Codes and Cryptography
Let $q$ be a prime power, $\mathbb F_q$ be the finite field of order $q$ and $\mathbb F_q(x)$ be the field of rational functions over $\mathbb F_q$. In this paper we classify all rational functions $\varphi\in \mathbb F_q(x)$ of degree 3 that induce
Autor:
Andrea Ferraguti, Carlo Pagano
Publikováno v:
International Mathematics Research Notices
In this paper, we prove several results on finitely generated dynamical Galois groups attached to quadratic polynomials. First we show that, over global fields, quadratic post-critically finite polynomials are precisely those having an arboreal repre
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a47d91e7439c869346b885c7522af168
http://arxiv.org/abs/2004.02847
http://arxiv.org/abs/2004.02847
Autor:
Peter Bruin, Andrea Ferraguti
Publikováno v:
Mathematics of Computation. 87:459-499
Let $K$ be a quadratic number field of discriminant $\Delta_K$, let $E$ be a $\mathbb Q$-curve without CM completely defined over $K$ and let $\omega_E$ be an invariant differential on $E$. Let $L(E,s)$ be the $L$-function of $E$. In this setting, it
Autor:
Peter Bruin, Andrea Ferraguti
Publikováno v:
International Journal of Number Theory, 15(3), 505-526. World Scientific Pub Co Pte Lt
Let [Formula: see text] be a [Formula: see text]-curve without complex multiplication. We address the problem of deciding whether [Formula: see text] is geometrically isomorphic to a strongly modular [Formula: see text]-curve. We show that the questi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3026e3d2f6d790a4e5fc4a7af07b9ead
http://hdl.handle.net/2318/1739681
http://hdl.handle.net/2318/1739681
Publikováno v:
Quarterly Journal of Mathematics. 69(3)
Let $q$ be an odd prime power and $D$ be the set of monic irreducible polynomials in $\mathbb F_q[x]$ which can be written as a composition of monic degree two polynomials. In this paper we prove that $D$ has a natural regular structure by showing th
Autor:
Andrea Ferraguti, Giacomo Micheli
Publikováno v:
Bulletin of the Australian Mathematical Society. 93:199-210
Let $K$ be a number field with ring of integers ${\mathcal{O}}$. After introducing a suitable notion of density for subsets of ${\mathcal{O}}$, generalising the natural density for subsets of $\mathbb{Z}$, we show that the density of the set of copri
Autor:
Andrea Ferraguti
Let $K$ be a number field with ring of integers $\mathcal O_K$, and let $\{f_k\}_{k\in \mathbb N}\subseteq \mathcal O_K[x]$ be a sequence of monic polynomials such that for every $n\in \mathbb N$, the composition $f^{(n)}=f_1\circ f_2\circ\ldots\circ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2c6427310a154d6b6220e21dbeba2cfd
Publikováno v:
Arithmetic of Finite Fields ISBN: 9783319552262
WAIFI
WAIFI
Let \(\mathcal {S}\) be a set of monic degree 2 polynomials over a finite field and let C be the compositional semigroup generated by \(\mathcal S\). In this paper we establish a necessary and sufficient condition for C to be consisting entirely of i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::233ddefd7bf3f7a67f820a4f5a921615
http://hdl.handle.net/11379/561641
http://hdl.handle.net/11379/561641