Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Andrés R. Vindas-Meléndez"'
Publikováno v:
Proceedings of the American Mathematical Society. 148:5091-5107
Equivariant Ehrhart theory enumerates the lattice points in a polytope with respect to a group action. Answering a question of Stapledon, we describe the equivariant Ehrhart theory of the permutahedron, and we prove his Effectiveness Conjecture in th
Autor:
Matias Von Bell, Benjamin Braun, Derek Hanely, Khrystyna Serhiyenko, Julianne Vega, Andrés R. Vindas-Meléndez, Martha Yip
This work regards the order polytopes arising from the class of generalized snake posets and their posets of meet-irreducible elements. Among generalized snake posets of the same rank, we characterize those whose order polytopes have minimal and maxi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ef5440bd6c2c5d2c65a683a844d2c5ab
Autor:
Christo Keller, Eunice Sukarto, Laura Colmenarejo, Zakiya Jones, Andrés R. Vindas-Meléndez, Andrés Ramos Rodríguez, Pamela E. Harris
Publikováno v:
Enumerative Combinatorics and Applications, Vol 1, Iss 2, p Article S2R11 (2021)
We recall that the $k$-Naples parking functions of length $n$ (a generalization of parking functions) are defined by requiring that a car which finds its preferred spot occupied must first back up a spot at a time (up to $k$ spots) before proceeding
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f30748cba6e8a107bcd71ed1f103c73f
http://arxiv.org/abs/2009.01124
http://arxiv.org/abs/2009.01124
The Ehrhart quasipolynomial of a rational polytope $P$ encodes the number of integer lattice points in dilates of $P$, and the $h^*$-polynomial of $P$ is the numerator of the accompanying generating function. We provide two decomposition formulas for
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::58a909a0a0d45ca6f5c9ad78f8f33132
Autor:
Pamela E. Harris, Alicia Prieto-Langarica, Vanessa Rivera Quiñones, Luis Sordo Vieira, Rosaura Uscanga, Andrés R. Vindas Meléndez
Testimonios brings together first-person narratives from the vibrant, diverse, and complex Latinx and Hispanic mathematical community. Starting with childhood and family, the authors recount their own individual stories, highlighting their upbringing
Autor:
Luís Vieira, Rosaura Uscanga, Pamela E. Harris, Alicia Prieto-Langarica, Vanessa Rivera Quinones, Andrés R. Vindas Meléndez
Publikováno v:
Notices of the American Mathematical Society. 68:1
Autor:
Pamela E Harris, Alicia Prieto-Langarica, Vanessa Rivera Quiñones, Luis Sordo Vieira, Rosaura Uscanga, Andrés R. Vindas Meléndez
Publikováno v:
Notices of the American Mathematical Society. 68:1
Autor:
Alberto Alonso, Jasmine Camero, Alejandra Castillo, Fabrice O. Ulysse, Uribe Victoria, Andrés R. Vindas Meléndez, Alexander Diaz-Lopez, Pamela E. Harris, Vanessa Rivera-Quiñones, Luis Sordo Vieira, Shelby Wilson, Aris Winger, Michael Young
Publikováno v:
Notices of the American Mathematical Society. 67:1
Autor:
Pamela E. Harris, Alicia Prieto Langarica, Vanessa Rivera-Quiñones, Luis Sordo Vieira, Rosaura Uscanga, Andrés R. Vindas Meléndez
Publikováno v:
Notices of the American Mathematical Society. 67:1
We consider the action of the symmetric group $S_n$ on the permutahedron $\Pi_n$. We prove that if $\sigma$ is a permutation of $S_n$ which has $m$ cycles of lengths $l_1, \ldots, l_m$, then the subpolytope of $\Pi_n$ fixed by $\sigma$ has normalized
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2426e4264f877653af06236624f09550
http://arxiv.org/abs/1803.02377
http://arxiv.org/abs/1803.02377