Zobrazeno 1 - 3
of 3
pro vyhledávání: '"André Zaidan"'
Publikováno v:
Algebras and Representation Theory. 24:1141-1153
For a smooth irreducible affine algebraic variety we study a class of gauge modules admitting compatible actions of both the algebra $A$ of functions and the Lie algebra $\mathcal{V}$ of vector fields on the variety. We prove that a gauge module corr
Autor:
André Zaidan, Iryna Kashuba, Eduardo Ventilari Sodré, Vladimir V. Sergeichuk, Victor Senoguchi Borges
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We classify all linear operators A : V → V satisfying ( A u , v ) = ( u , A r v ) and all linear operators satisfying ( A u , A r v ) = ( u , v ) with r = 2 , 3 , … on a complex, real, or quaternion vector space with scalar product given by a non
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::835cdca262b4cd68f7a28ca4d382e6c4
http://arxiv.org/abs/2012.04052
http://arxiv.org/abs/2012.04052
Publikováno v:
Linear Algebra and its Applications. 531:356-374
Let $\mathcal A:U\to V$ be a linear mapping between vector spaces $U$ and $V$ over a field or skew field $\mathbb F$ with symmetric, or skew-symmetric, or Hermitian forms $\mathcal B:U\times U\to\mathbb F$ and $\mathcal C:V\times V\to\mathbb F.$ We c