Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Andoni Larumbe-Bergera"'
Publikováno v:
Sensors, Vol 21, Iss 20, p 6847 (2021)
Remote eye tracking technology has suffered an increasing growth in recent years due to its applicability in many research areas. In this paper, a video-oculography method based on convolutional neural networks (CNNs) for pupil center detection over
Externí odkaz:
https://doaj.org/article/55d0abc26dbd4a6d8b91ae932239283a
Autor:
Gonzalo Garde, Andoni Larumbe-Bergera, Benoît Bossavit, Sonia Porta, Rafael Cabeza, Arantxa Villanueva
Publikováno v:
Sensors, Vol 21, Iss 15, p 5109 (2021)
Subject calibration has been demonstrated to improve the accuracy in high-performance eye trackers. However, the true weight of calibration in off-the-shelf eye tracking solutions is still not addressed. In this work, a theoretical framework to measu
Externí odkaz:
https://doaj.org/article/234f7311e6dd4d09b45c8d4d8e69c03b
Publikováno v:
Sensors (Basel, Switzerland)
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
instname
Sensors, Vol 21, Iss 6847, p 6847 (2021)
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
instname
Sensors, Vol 21, Iss 6847, p 6847 (2021)
Remote eye tracking technology has suffered an increasing growth in recent years due to its applicability in many research areas. In this paper, a video-oculography method based on convolutional neural networks (CNNs) for pupil center detection over
Publikováno v:
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
instname
Pattern Recognition. ICPR International Workshops and Challenges ISBN: 9783030687953
ICPR Workshops (3)
instname
Pattern Recognition. ICPR International Workshops and Challenges ISBN: 9783030687953
ICPR Workshops (3)
In this paper, we focus on the calibration possibilitieso of a deep learning based gaze estimation process applying transfer learning, comparing its performance when using a general dataset versus when using a gaze specific dataset in the pretrained
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::83ecf546d9e78bb69149b978a5357403
https://hdl.handle.net/2454/41211
https://hdl.handle.net/2454/41211
Autor:
Sonia Porta, Benoît Bossavit, Rafael Cabeza, Arantxa Villanueva, Gonzalo Garde, Andoni Larumbe-Bergera
Publikováno v:
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
instname
Sensors
Volume 21
Issue 15
Sensors (Basel, Switzerland)
Sensors, Vol 21, Iss 5109, p 5109 (2021)
instname
Sensors
Volume 21
Issue 15
Sensors (Basel, Switzerland)
Sensors, Vol 21, Iss 5109, p 5109 (2021)
Subject calibration has been demonstrated to improve the accuracy in high-performance eye trackers. However, the true weight of calibration in off-the-shelf eye tracking solutions is still not addressed. In this work, a theoretical framework to measu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::59b27044f6b51a14d1f780ca39cc0412
https://hdl.handle.net/2454/41210
https://hdl.handle.net/2454/41210
Autor:
Benoît Bossavit, Sonia Porta, Rafael Cabeza, Arantxa Villanueva, Gonzalo Garde, Andoni Larumbe-Bergera
Publikováno v:
ETRA Short Papers
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
instname
Academica-e: Repositorio Institucional de la Universidad Pública de Navarra
Universidad Pública de Navarra
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
instname
Academica-e: Repositorio Institucional de la Universidad Pública de Navarra
Universidad Pública de Navarra
In this paper, we evaluate a synthetic framework to be used in the field of gaze estimation employing deep learning techniques. The lack of sufficient annotated data could be overcome by the utilization of a synthetic evaluation framework as far as i
Publikováno v:
ETRA
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
instname
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
instname
Availability of large scale tagged datasets is a must in the field of deep learning applied to the eye tracking challenge. In this paper, the potential of Supervised-Descent-Method (SDM) as a semiautomatic labelling tool for eye tracking images is sh
Autor:
Gonzalo Garde, Benoît Bossavit, Rafael Cabeza, Sonia Porta, Andoni Larumbe-Bergera, Arantxa Villanueva
Publikováno v:
Academica-e: Repositorio Institucional de la Universidad Pública de Navarra
Universidad Pública de Navarra
ICCV Workshops
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
instname
Universidad Pública de Navarra
ICCV Workshops
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
instname
Theory shows that huge amount of labelled data are needed in order to achieve reliable classification/regression methods when using deep/machine learning techniques. However, in the eye tracking field, manual annotation is not a feasible option due t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ee01670b671bc39c2f8b5302c4d51afc
https://hdl.handle.net/2454/37285
https://hdl.handle.net/2454/37285
Autor:
Mikel Ariz, Sonia Porta, Ion Martinikorena, Andoni Larumbe-Bergera, Rafael Cabeza, Arantxa Villanueva
Publikováno v:
Dadun. Depósito Académico Digital de la Universidad de Navarra
instname
Academica-e: Repositorio Institucional de la Universidad Pública de Navarra
Universidad Pública de Navarra
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
instname
Academica-e: Repositorio Institucional de la Universidad Pública de Navarra
Universidad Pública de Navarra
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
Eye tracking technology in low resolution scenarios is not a completely solved issue to date. The possibility of using eye tracking in a mobile gadget is a challenging objective that would permit to spread this technology to non-explored fields. In t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0cafb34cab458219e78a05ab50524d6e
https://hdl.handle.net/10171/64434
https://hdl.handle.net/10171/64434