Zobrazeno 1 - 10
of 527
pro vyhledávání: '"Andersson, Helge"'
We propose a novel integral model describing the motion of curved slender fibers in viscous flow, and develop a numerical method for simulating dynamics of rigid fibers. The model is derived from nonlocal slender body theory (SBT), which approximates
Externí odkaz:
http://arxiv.org/abs/2012.11561
The existence of a quiescent core (QC) in the center of turbulent channel flows was demonstrated in recent experimental and numerical studies. The QC-region, which is characterized by relatively uniform velocity magnitude and weak turbulence levels,
Externí odkaz:
http://arxiv.org/abs/2009.07739
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
A geometric numerical method for simulating suspensions of spherical and non-spherical particles with Stokes drag is proposed. The method combines divergence-free matrix-valued radial basis function interpolation of the fluid velocity field with a sp
Externí odkaz:
http://arxiv.org/abs/1907.11936
In this paper we consider a computational model for the motion of thin, rigid fibers in viscous flows based on slender body theory. Slender body theory approximates the fluid velocity field about the fiber as the flow due to a distribution of singula
Externí odkaz:
http://arxiv.org/abs/1906.00253
Two methods for solid body representation in flow simulations available in the Pencil Code are the immersed boundary method and overset grids. These methods are quite different in terms of computational cost, flexibility and numerical accuracy. We pr
Externí odkaz:
http://arxiv.org/abs/1806.06776
We investigate the instabilities, bifurcations and transition in the wake behind a 45-degree inclined 6:1 prolate spheroid, through a series of direct numerical simulations (DNS) over a wide range of Reynolds numbers (Re) from 10 to 3000. We provide
Externí odkaz:
http://arxiv.org/abs/1804.02562
Calculating cost-effective solutions to particle dynamics in viscous flows is an important problem in many areas of industry and nature. We implement a second-order symmetric splitting method on the governing equations for a rigid spheroidal particle
Externí odkaz:
http://arxiv.org/abs/1804.02123
Publikováno v:
In International Journal of Heat and Fluid Flow June 2022 95
Publikováno v:
In Journal of Computational Physics 1 January 2022 448