Zobrazeno 1 - 10
of 1 175
pro vyhledávání: '"Anderson localisation"'
Autor:
Shamailov, Sophie S.
Here I provide additional experimental information and criticise the analysis, modelling, interpretation and claims presented in the recent paper [Nature Communications 11, 4942 (2020)]. I argue that the authors have no clear experimental evidence of
Externí odkaz:
http://arxiv.org/abs/2111.14229
Autor:
Macera, Davide, Sodin, Sasha
In 1990, Klein, Lacroix, and Speis proved (spectral) Anderson localisation for the Anderson model on the strip of width $W \geqslant 1$, allowing for singular distribution of the potential. Their proof employs multi-scale analysis, in addition to arg
Externí odkaz:
http://arxiv.org/abs/2110.00097
Publikováno v:
Phys. Rev. B 103, 100204 (2021)
Motivated by the link between Anderson localisation on high-dimensional graphs and many-body localisation, we study the effect of periodic driving on Anderson localisation on random trees. The time dependence is eliminated in favour of an extra dimen
Externí odkaz:
http://arxiv.org/abs/2101.00018
Motivated by experimental progress in cold atomic systems, we use and advance Localisation Landscape Theory (LLT), to examine two-dimensional systems with point-like random scatterers. We begin by showing that exact eigenstates cannot be efficiently
Externí odkaz:
http://arxiv.org/abs/2003.00149
Autor:
White, Donald H., Haase, Thomas A., Brown, Dylan J., Hoogerland, Maarten D., Najafabadi, Mojdeh S., Helm, John L., Gies, Christopher, Schumayer, Daniel, Hutchinson, David A. W.
Anderson localisation -- the inhibition of wave propagation in disordered media -- is a surprising interference phenomenon which is particularly intriguing in two-dimensional (2D) systems. While an ideal, non-interacting 2D system of infinite size is
Externí odkaz:
http://arxiv.org/abs/1911.04858
Autor:
Sturges, Thomas J., Anderson, Mitchell D., Buraczewski, Adam, Navadeh-Toupchi, Morteza, Adiyatullin, Albert F., Jabeen, Fauzia, Oberli, Daniel Y., Portella-Oberli, Marcia T., Stobińska, Magdalena
Publikováno v:
Sci Rep 9, 19396 (2019)
We present an experimental signature of the Anderson localisation of microcavity polaritons, and provide a systematic study of the dependence on disorder strength. We reveal a controllable degree of localisation, as characterised by the inverse-parti
Externí odkaz:
http://arxiv.org/abs/1903.09550
Autor:
Texier, Christophe
Publikováno v:
Europhys. Lett. 131, 17002 (2020)
Products of random matrix products of $\mathrm{SL}(2,\mathbb{R})$, corresponding to transfer matrices for the one-dimensional Schr\"odinger equation with a random potential $V$, are studied. I consider both the case where the potential has a finite s
Externí odkaz:
http://arxiv.org/abs/1910.01989
Autor:
Chulaevsky, Victor, Sodin, Sasha
Publikováno v:
Pure Appl. Funct. Anal. 5 (2020), no. 6, 1279--1296
An ensemble of quasi-periodic discrete Schr\"{o}dinger operators with an arbitrary number of basic frequencies is considered, in a lattice of arbitrary dimension, in which the hull function is a realisation of a stationary Gaussian process on the tor
Externí odkaz:
http://arxiv.org/abs/1906.05752
Autor:
Ossipov, A.
Publikováno v:
Phys. Rev. Lett. 121, 076601 (2018)
We develop a novel approach to the Anderson localisation problem in a $d$-dimensional disordered sample of dimension $L\times M^{d-1}$. Attaching a perfect lead with the cross-section $M^{d-1}$ to one side of the sample, we derive evolution equations
Externí odkaz:
http://arxiv.org/abs/1803.01828
Publikováno v:
Phys. Rev. E 99, 032211 (2019)
We numerically investigate the dynamics of an one-dimensional disordered lattice using the Hertzian model, describing a granular chain, and the $\alpha+\beta $ Fermi-Pasta-Ulam-Tsingou model (FPUT). The most profound difference between the two system
Externí odkaz:
http://arxiv.org/abs/1811.10288