Zobrazeno 1 - 10
of 70
pro vyhledávání: '"Anderson Faustino da Silva"'
Publikováno v:
Journal of Universal Computer Science, Vol 25, Iss 1, Pp 42-72 (2019)
The literature presents several auto-tunning systems for compiler optimizations, which employ a variety of techniques; however, most systems do not explore the premise that a large amount of program runtime is spent by hot functions which are the por
Externí odkaz:
https://doaj.org/article/a20801c2647646868c0b0c7d1fdef5dc
Publikováno v:
IEEE Latin America Transactions. 20:395-401
Autor:
Thaís Damásio, Michael Canesche, Vinícius Pacheco, Marcus Botacin, Anderson Faustino da Silva, Fernando M. Quintão Pereira
Publikováno v:
Proceedings of the 21st ACM/IEEE International Symposium on Code Generation and Optimization.
Publikováno v:
IEEE Latin America Transactions. 18:1185-1192
An important component of virtual machines is the adaptive optimization system, which decides what methods to optimize and what compiler optimization set to enable. In this context, this paper presents the development of an auto-tuning adaptive optim
Autor:
Vanderson Martins do Rosario, Anderson Faustino da Silva, André Felipe Zanella, Otávio O. Napoli, Edson Borin
Publikováno v:
Concurrency and Computation: Practice and Experience.
Publikováno v:
Journal of Computer Languages. 74:101188
Publikováno v:
Anais do XXII Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD 2021).
Um dos principais problemas que impedem Redes Neurais Profundas se tornarem predominantes para otimização de compiladores é a dificuldade de criação de conjuntos de dados de alta qualidade. Benchmarks reais geralmente são programas grandes e co
Publikováno v:
SBLP
Embedded Systems applications have several limitations, one of these limitations is the memory size. Modern compilers provide optimization sequences that reduce the code size, contributing to solve this memory issue. This paper presents a new approac
Publikováno v:
COMPUTING AND INFORMATICS; Vol. 39 No. 6 (2020): Computing and Informatics; 1117–1147
The Optimization Selection Problem is widely known in computer science for its complexity and importance. Several approaches based on machine learning and iterative compilation have been proposed to mitigate this problem. Although these approaches pr
Autor:
Fernando Magno Quintão Pereira, José Wesley de Souza Magalhães, Anderson Faustino da Silva, Jerônimo Nunes Rocha, Bruno Conde Kind, Breno Campos Ferreira Guimaraes
Publikováno v:
CGO
A predictive compiler uses properties of a program to decide how to optimize it. The compiler is trained on a collection of programs to derive a model which determines its actions in face of unknown codes. One of the challenges of predictive compilat