Zobrazeno 1 - 10
of 137
pro vyhledávání: '"Andersen, Henning Haahr"'
Autor:
Andersen, Henning Haahr
Let $\mathcal O_p$ denote the characteristic $p>0$ version of the ordinary category $\mathcal O$ for a semisimple complex Lie algebra. In this paper we give some (formal) character formulas in $\mathcal O_p$. First we concentrate on the irreducible c
Externí odkaz:
http://arxiv.org/abs/2209.02261
Autor:
Andersen, Henning Haahr
Let G be a reductive algebraic group over a field k and let B be a Borel subgroup in G. We demonstrate how a number of results on the cohomology of line bundles on the flag manifold G/B have had interesting consequences in the representation theory f
Externí odkaz:
http://arxiv.org/abs/2201.01052
Autor:
Andersen, Henning Haahr
Let $\mathfrak g$ be a simple complex Lie algebra. In this paper we study the BGG category $\mathcal O_q$ for the quantum group $U_q(\mathfrak g)$ with $q$ being a root of unity in a field $K$ of characteristic $p >0$. We first consider the simple mo
Externí odkaz:
http://arxiv.org/abs/2106.00057
Autor:
Andersen, Henning Haahr
In this paper we study categories of tilting modules. Our starting point is the tilting modules for a reductive algebraic group G in positive characteristic. Here we extend the main result in [8] by proving that these tilting modules form a (strictly
Externí odkaz:
http://arxiv.org/abs/1912.00817
Autor:
Andersen, Henning Haahr1 (AUTHOR)
Publikováno v:
Representation Theory. 1/5/2024, Vol. 28, p1-19. 19p.
Autor:
Andersen, Henning Haahr
Let $G$ be a semisimple algebraic group over a field of characteristic $p > 0$. We prove that the dual Weyl modules for $G$ all have $p$-filtrations when $p$ is not too small. Moreover, we give applications of this theorem to $p^n$-filtrations for $n
Externí odkaz:
http://arxiv.org/abs/1810.04052
Autor:
Andersen, Henning Haahr
Let $G$ be a connected reductive algebraic group over a field of positive characteristic $p$ and denote by $\mathcal T$ the category of tilting modules for $G$. The higher Jones algebras are the endomorphism algebras of objects in the fusion quotient
Externí odkaz:
http://arxiv.org/abs/1802.08706
Autor:
Andersen, Henning Haahr
Let $k$ be an arbitrary field and let $q \in k\setminus\{0\}$. In this paper we use the known tilting theory for the quantum group $U_q(sl_2)$ to obtain the dimensions of simple modules for the Temperley-Lieb algebras $TL_n(q+q^{-1})$ and related alg
Externí odkaz:
http://arxiv.org/abs/1709.00248
Autor:
Andersen, Henning Haahr
Let G be a reductive algebraic group over a field of positive characteristic and denote by C(G) the category of rational G-modules. In this note we investigate the subcategory of C(G) consisting of those modules whose composition factors all have hig
Externí odkaz:
http://arxiv.org/abs/1706.00590
Publikováno v:
J. Aust. Math. Soc. 103 (2017), no. 1, 1-44
We show how to use Jantzen's sum formula for Weyl modules to prove semisimplicity criteria for endomorphism algebras of $\textbf{U}_q$-tilting modules (for any field $\mathbb{K}$ and any parameter $q\in\mathbb{K}-\{0,-1\}$). As an application, we rec
Externí odkaz:
http://arxiv.org/abs/1507.07676