Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Anastasios N. Angelopoulos"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Foundations and Trends® in Machine Learning. 16:494-591
Autor:
Clara Fannjiang, Stephen Bates, Anastasios N. Angelopoulos, Jennifer Listgarten, Michael I. Jordan
Publikováno v:
Proceedings of the National Academy of Sciences. 119
Many applications of machine-learning methods involve an iterative protocol in which data are collected, a model is trained, and then outputs of that model are used to choose what data to consider next. For example, a data-driven approach for designi
This book is about conformal prediction and related inferential techniques that build on permutation tests and exchangeability. These techniques are useful in a diverse array of tasks, including hypothesis testing and providing uncertainty quantifica
Externí odkaz:
http://arxiv.org/abs/2411.11824
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031164514
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1b3b08179dfb83d4ba1fa81cf1194541
https://doi.org/10.1007/978-3-031-16452-1_52
https://doi.org/10.1007/978-3-031-16452-1_52
Black-box machine learning models are now routinely used in high-risk settings, like medical diagnostics, which demand uncertainty quantification to avoid consequential model failures. Conformal prediction is a user-friendly paradigm for creating sta
Publikováno v:
Oberwolfach Reports; 2024, Vol. 21 Issue 2, p1677-1718, 42p
Autor:
Fannjiang, Clara, Bates, Stephen, Angelopoulos, Anastasios N., Listgarten, Jennifer, Jordan, Michael I.
Publikováno v:
Proceedings of the National Academy of Sciences of the United States of America; 10/25/2022, Vol. 119 Issue 43, p1-15, 27p
Autor:
Angelopoulos, Anastasios N., Martel, Julien N.P., Kohli, Amit P., Conradt, Jorg, Wetzstein, Gordon
Publikováno v:
IEEE Transactions on Visualization & Computer Graphics; May2021, Vol. 27 Issue 5, p2577-2586, 10p
Computer vision has made enormous progress in recent years, and its applications are multifaceted and growing quickly, while many challenges still remain. This book brings together a range of leading researchers to examine a wide variety of research