Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Anastasia Gazgalis"'
Publikováno v:
Arthroplasty Today, Vol 27, Iss , Pp 101404- (2024)
Reconstruction of the hip joint in the setting of metastatic lesions of the acetabulum is particularly challenging and can carry significant morbidity for patients who are already medically frail. Novel techniques to minimize morbidity and optimize f
Externí odkaz:
https://doaj.org/article/85dbd1e5c8b940d987aa6b8af5fdc54b
Autor:
Cesar D. Lopez, BS, Anastasia Gazgalis, BS, Venkat Boddapati, MD, Roshan P. Shah, MD, H. John Cooper, MD, Jeffrey A. Geller, MD
Publikováno v:
Arthroplasty Today, Vol 11, Iss , Pp 103-112 (2021)
Background: Artificial intelligence (AI) and machine learning (ML) modeling in hip and knee arthroplasty (total joint arthroplasty [TJA]) is becoming more commonplace. This systematic review aims to quantify the accuracy of current AI- and ML-based a
Externí odkaz:
https://doaj.org/article/b3bec2b6eaf7441792e10982e566bd6e
Autor:
Carl L. Herndon, MD, Kyle L. McCormick, MD, Anastasia Gazgalis, MD, Elise C. Bixby, MD, Matthew M. Levitsky, MD, Alexander L. Neuwirth, MD
Publikováno v:
Arthroplasty Today, Vol 11, Iss , Pp 239-251 (2021)
Background: The Fragility Index (FI) and Reverse Fragility Index are powerful tools to supplement the P value in evaluation of randomized clinical trial (RCT) outcomes. These metrics are defined as the number of patients needed to change the signific
Externí odkaz:
https://doaj.org/article/67f1a271d1ca4f5c8c7b007a29d3248e
Autor:
Michael B. Held, MD, MBA, Matthew J. Grosso, MD, Anastasia Gazgalis, BS, Nana O. Sarpong, MD, MBA, Venkat Boddapati, MD, Alexander Neuwirth, MD, Jeffrey A. Geller, MD
Publikováno v:
Arthroplasty Today, Vol 7, Iss , Pp 130-134 (2021)
Background: Robot-assisted surgery was developed to improve accuracy and outcomes in total knee arthroplasty (TKA). One important determinant of TKA success is a well-balanced knee throughout the range of motion. The purpose of this study is to deter
Externí odkaz:
https://doaj.org/article/f66c432ee8794efbbcee6bed34cfa890
Autor:
Jeffrey A. Geller, Alirio J. deMeireles, Anastasia Gazgalis, Walkania Santos, Alexander L. Neuwirth, Roshan P. Shah, H. John Cooper
Publikováno v:
The Journal of Arthroplasty. 38:S196-S203
Autor:
Kevin Y. Wang, Matthew J. LaVelle, Anastasia Gazgalis, Joshua M. Bender, Jeffrey A. Geller, Alexander L. Neuwirth, H. John Cooper, Roshan P. Shah
Publikováno v:
JBJS Reviews. 11
Autor:
Jeffrey A. Geller, Roshan P. Shah, Anastasia Gazgalis, H. John Cooper, Venkat Boddapati, Cesar D. Lopez
Publikováno v:
Arthroplasty Today, Vol 11, Iss, Pp 103-112 (2021)
Arthroplasty Today
Arthroplasty Today
Background: Artificial intelligence (AI) and machine learning (ML) modeling in hip and knee arthroplasty (total joint arthroplasty [TJA]) is becoming more commonplace. This systematic review aims to quantify the accuracy of current AI- and ML-based a
Autor:
Elise C. Bixby, Carl L. Herndon, Kyle L. McCormick, Matthew M. Levitsky, Alexander L. Neuwirth, Anastasia Gazgalis
Publikováno v:
Arthroplasty Today, Vol 11, Iss, Pp 239-251 (2021)
Arthroplasty Today
Arthroplasty Today
Background: The Fragility Index (FI) and Reverse Fragility Index are powerful tools to supplement the P value in evaluation of randomized clinical trial (RCT) outcomes. These metrics are defined as the number of patients needed to change the signific
Autor:
Anastasia Gazgalis, Alexander L. Neuwirth, Roshan P. Shah, H. John Cooper, Michael B. Held, Jeffrey A. Geller
Publikováno v:
Knee Surgery, Sports Traumatology, Arthroscopy. 30:2631-2638
Robotic-assisted total knee arthroplasty (RA-TKA) was introduced to improve limb alignment, component positioning, soft-tissue balance and to minimize surgical outliers. This study investigates perioperative outcomes, complications, and early patient
Autor:
Cesar D, Lopez, Anastasia, Gazgalis, Joel R, Peterson, Jamie E, Confino, William N, Levine, Charles A, Popkin, T Sean, Lynch
Publikováno v:
Arthroscopy: The Journal of Arthroscopic & Related Surgery. 39:777-786.e5
This study aimed to develop machine learning (ML) models to predict hospital admission (overnight stay) as well as short-term complications and readmission rates following anterior cruciate ligament reconstruction (ACLR). Furthermore, we sought to co