Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Anand Kumar Narayanan"'
Publikováno v:
Physical Review Research, Vol 6, Iss 4, p 043279 (2024)
Lattice-based cryptography has emerged as one of the most prominent candidates for postquantum cryptography, projected to be secure against the imminent threat of large-scale fault-tolerant quantum computers. The Shortest Vector Problem (SVP) is to f
Externí odkaz:
https://doaj.org/article/a9f8bfa97f81499ab1cd256f632d0fd4
Autor:
Anand Kumar Narayanan, Matthew Weidner
Publikováno v:
SODA
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Jan 2020, Salt Lake City, UT, United States. pp.1337-1356, ⟨10.1137/1.9781611975994.81⟩
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Jan 2020, Salt Lake City, UT, United States. pp.1337-1356, ⟨10.1137/1.9781611975994.81⟩
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms
International audience; Tree codes, introduced by Schulman [26, 27], are combinatorial structures essential to coding for interactive communication. An infinite family of tree codes with both rate and distance bounded by positive constants is called
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::119f6cfb6a67bb967e3783b83702c344
https://doi.org/10.1137/1.9781611975994.81
https://doi.org/10.1137/1.9781611975994.81
Autor:
Matthew Weidner, Anand Kumar Narayanan
Publikováno v:
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory, Institute of Electrical and Electronics Engineers, 2019, 65 (10), pp.6010-6021. ⟨10.1109/TIT.2019.2930538⟩
IEEE Transactions on Information Theory, Institute of Electrical and Electronics Engineers, 2019, 65 (10), pp.6010-6021. ⟨10.1109/TIT.2019.2930538⟩
We construct explicit algebraic geometry codes built from the Garcia-Stichtenoth function field tower beating the Gilbert-Varshamov bound for alphabet sizes at least 192. Messages are identied with functions in certain Riemann-Roch spaces associated
Autor:
Anand Kumar Narayanan
Publikováno v:
Finite Fields and Their Applications
Finite Fields and Their Applications, Elsevier, 2018, 54, pp.335-365. ⟨10.1016/j.ffa.2018.08.003⟩
Finite Fields and Their Applications, Elsevier, 2018, 54, pp.335-365. ⟨10.1016/j.ffa.2018.08.003⟩
We propose and rigorously analyze two randomized algorithms to factor univariate polynomials over finite fields using rank $2$ Drinfeld modules. The first algorithm estimates the degree of an irreducible factor of a polynomial from Euler-Poincare cha
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f5aa20427b88eb92f215a4187c0b43f6
https://hal.archives-ouvertes.fr/hal-02318219
https://hal.archives-ouvertes.fr/hal-02318219
Publikováno v:
Journal of Symbolic Computation
Journal of Symbolic Computation, Elsevier, 2021, 105 (July–August 2021), pp.199-213. ⟨10.1016/j.jsc.2020.06.007⟩
Journal of Symbolic Computation, Elsevier, 2021, 105 (July–August 2021), pp.199-213. ⟨10.1016/j.jsc.2020.06.007⟩
We present a novel randomized algorithm to factor polynomials over a finite field $\F_q$ of odd characteristic using rank $2$ Drinfeld modules with complex multiplication. The main idea is to compute a lift of the Hasse invariant (modulo the polynomi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9f22163764d44b6f7d1d8380966a7a3f
http://arxiv.org/abs/1712.00669
http://arxiv.org/abs/1712.00669
Autor:
Ming-Deh Huang, Anand Kumar Narayanan
Publikováno v:
Finite Fields: Theory and Applications. :235-253
Autor:
Anand Kumar Narayanan
Publikováno v:
Lecture Notes in Computer Science
Lecture Notes in Computer Science-Arithmetic of Finite Fields
WAIFI 2018-7th International Workshop on the Arithmetic of Finite Fields
WAIFI 2018-7th International Workshop on the Arithmetic of Finite Fields, Jun 2018, Bergen, Norway. pp.74-91, ⟨10.1007/978-3-030-05153-2_4⟩
Arithmetic of Finite Fields-7th International Workshop, WAIFI 2018, Bergen, Norway, June 14-16, 2018, Revised Selected Papers
Arithmetic of Finite Fields ISBN: 9783030051525
WAIFI
Lecture Notes in Computer Science-Arithmetic of Finite Fields
WAIFI 2018-7th International Workshop on the Arithmetic of Finite Fields
WAIFI 2018-7th International Workshop on the Arithmetic of Finite Fields, Jun 2018, Bergen, Norway. pp.74-91, ⟨10.1007/978-3-030-05153-2_4⟩
Arithmetic of Finite Fields-7th International Workshop, WAIFI 2018, Bergen, Norway, June 14-16, 2018, Revised Selected Papers
Arithmetic of Finite Fields ISBN: 9783030051525
WAIFI
We propose a randomized algorithm to compute isomorphisms between finite fields using elliptic curves. To compute an isomorphism between two fields of cardinality $q^n$, our algorithm takes $$n^{1+o(1)} \log^{1+o(1)}q + \max_{\ell} \left(\ell^{n_\ell
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b4a285ca707ea20c5aeba55b77017ebc