Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Analogy classification"'
Autor:
Miguel Couceiro, Amandine Decker, Pierre-Alexandre Murena, Puthineath Lay, Esteban Marquer, Safa Alsaidi
Publikováno v:
IEEE DSAA 2021-The 8th IEEE International Conference on Data Science and Advanced Analytics
IEEE DSAA 2021-The 8th IEEE International Conference on Data Science and Advanced Analytics, Oct 2021, Porto / Online, Portugal. IEEE DSAA 2021
The 8th IEEE International Conference on Data Science and Advanced Analytics (DSAA)
The 8th IEEE International Conference on Data Science and Advanced Analytics (DSAA), Oct 2021, Porto/Online, Portugal
DSAA
DSAA 2021-8th IEEE International Conference on Data Science and Advanced Analytics
DSAA 2021-8th IEEE International Conference on Data Science and Advanced Analytics, Oct 2021, Porto/Online, Portugal. pp.1-10
IEEE DSAA 2021-The 8th IEEE International Conference on Data Science and Advanced Analytics, Oct 2021, Porto / Online, Portugal., IEEE DSAA 2021
IEEE DSAA 2021-The 8th IEEE International Conference on Data Science and Advanced Analytics, Oct 2021, Porto / Online, Portugal. IEEE DSAA 2021
The 8th IEEE International Conference on Data Science and Advanced Analytics (DSAA)
The 8th IEEE International Conference on Data Science and Advanced Analytics (DSAA), Oct 2021, Porto/Online, Portugal
DSAA
DSAA 2021-8th IEEE International Conference on Data Science and Advanced Analytics
DSAA 2021-8th IEEE International Conference on Data Science and Advanced Analytics, Oct 2021, Porto/Online, Portugal. pp.1-10
IEEE DSAA 2021-The 8th IEEE International Conference on Data Science and Advanced Analytics, Oct 2021, Porto / Online, Portugal., IEEE DSAA 2021
Analogical proportions are statements of the form "A is to B as C is to D" that are used for several reasoning and classification tasks in artificial intelligence and natural language processing (NLP). For instance, there are analogy based approaches
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c88db8671c48e40616125ba1d313b654
https://hal.inria.fr/hal-03328841/document
https://hal.inria.fr/hal-03328841/document
Autor:
Alsaidi, Safa, Decker, Amandine, Lay, Puthineath, Marquer, Esteban, Murena, Pierre-Alexandre, Couceiro, Miguel
Publikováno v:
AIMLAI 2021-workshop on Advances in Interpretable Machine Learning and Artificial Intelligence
AIMLAI 2021-workshop on Advances in Interpretable Machine Learning and Artificial Intelligence, Sep 2021, Bilbao/Virtual, Spain. pp.76-89
AIMLAI, ECML PKDD 2021: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
AIMLAI, ECML PKDD 2021: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Sep 2021, Bilbao/Virtual, Spain
AIMLAI 2021-workshop on Advances in Interpretable Machine Learning and Artificial Intelligence, Sep 2021, Bilbao/Virtual, Spain. pp.76-89
AIMLAI, ECML PKDD 2021: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
AIMLAI, ECML PKDD 2021: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Sep 2021, Bilbao/Virtual, Spain
Analogical proportions are statements expressed in the form "A is to B as C is to D" and are used for several reasoning and classification tasks in artificial intelligence and natural language processing (NLP). In this paper, we focus on morphologica
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b44b84fc3a7a5588dba1661c195fce33
Conference
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Conference
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Conference
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Kniha
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Analogical proportions are statements of the form “A is to B as C is to D” that are used for several reasoning and classification tasks in artificial intelligence and natural language processing (NLP). For instance, there are analogy based approa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dris___01170::a2d56cdbae91a3337a7fe3c4b91e544f
https://hdl.handle.net/11420/15237
https://hdl.handle.net/11420/15237
Autor:
Safa Alsaidi, Miguel Couceiro, Esteban Marquer, Sophie Quennelle, Anita Burgun, Nicolas Garcelon, Adrien Coulet
Publikováno v:
HAL
ATA@ICCBR 2022-Workshop Analogies: from Theory to Applications
ATA@ICCBR 2022-Workshop Analogies: from Theory to Applications, Sep 2022, Nancy, France
ATA@ICCBR 2022-Workshop Analogies: from Theory to Applications
ATA@ICCBR 2022-Workshop Analogies: from Theory to Applications, Sep 2022, Nancy, France
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::357902260ca73b9d6849cb8bde4505a9
https://hal.inria.fr/hal-03763772
https://hal.inria.fr/hal-03763772
Autor:
Safa Alsaidi, Miguel Couceiro, Sophie Quennelle, Anita Burgun, Nicolas Garcelon, Adrien Coulet
Publikováno v:
HAL
IARML@IJCAI-ECAI’2022: Workshop on the Interactions between Analogical Reasoning and Machine Learning, at IJCAI-ECAI’2022
IARML@IJCAI-ECAI’2022: Workshop on the Interactions between Analogical Reasoning and Machine Learning, at IJCAI-ECAI’2022, Jul 2022, Vienna, Austria
IARML@IJCAI-ECAI’2022: Workshop on the Interactions between Analogical Reasoning and Machine Learning, at IJCAI-ECAI’2022
IARML@IJCAI-ECAI’2022: Workshop on the Interactions between Analogical Reasoning and Machine Learning, at IJCAI-ECAI’2022, Jul 2022, Vienna, Austria
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::9632312ce12efb3c7e6fc56960e28f63
https://hal.inria.fr/hal-03955354
https://hal.inria.fr/hal-03955354