Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Anagnostopoulos, Evangelos"'
Autor:
Brouklogiannis, Ioannis P., Anagnostopoulos, Evangelos C., Griela, Eirini, Paraskeuas, Vasileios V., Mountzouris, Konstantinos C.
Publikováno v:
In Poultry Science April 2023 102(4)
We study the fundamental problem of polytope membership aiming at large convex polytopes, i.e. in high dimension and with many facets, given as an intersection of halfspaces. Standard data-structures as well as brute force methods cannot scale, due t
Externí odkaz:
http://arxiv.org/abs/1804.11295
The approximate nearest neighbor problem ($\epsilon$-ANN) in high dimensional Euclidean space has been mainly addressed by Locality Sensitive Hashing (LSH), which has polynomial dependence in the dimension, sublinear query time, but subquadratic spac
Externí odkaz:
http://arxiv.org/abs/1412.1683
Autor:
Anagnostopoulos, Evangelos C.1 (AUTHOR), Brouklogiannis, Ioannis P.1 (AUTHOR), Griela, Eirini1 (AUTHOR), Paraskeuas, Vasileios V.1 (AUTHOR), Mountzouris, Konstantinos C.1 (AUTHOR) kmountzouris@aua.gr
Publikováno v:
Animals (2076-2615). Jan2023, Vol. 13 Issue 2, p294. 11p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Approximate nearest neighbor search (epsilon-ANN) in high dimensions has been mainly addressed by Locality Sensitive Hashing (LSH), which has complexity with polynomial dependence in dimension, sublinear query time, but subquadratic space requirement
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2127::e0d63a8865cef7a6ab58746353788f2a
https://pergamos.lib.uoa.gr/uoa/dl/object/uoadl:3180254
https://pergamos.lib.uoa.gr/uoa/dl/object/uoadl:3180254
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Large scale duplicate detection, clustering and mining of documents or images has been conventionally treated with seed detection via hashing, followed by seed growing heuristics using fast search. Principled clustering methods, especially kernelized
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2127::9eb496fcac1cad0702d2a705920a9a42
https://pergamos.lib.uoa.gr/uoa/dl/object/uoadl:3163911
https://pergamos.lib.uoa.gr/uoa/dl/object/uoadl:3163911
The approximate nearest neighbor problem (epsilon-ANN) in Euclidean settings is a fundamental question, which has been addressed by two main approaches: Data-dependent space partitioning techniques perform well when the dimension is relatively low, b
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d3046678c3190ea533e70fa0270378c7
Publikováno v:
2015 IEEE International Conference on Computer Vision (ICCV); 1/1/2015, p1502-1510, 9p