Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Ana M. Porto"'
Autor:
Antonio F. Costa, Ana M. Porto
Publikováno v:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 113:3375-3382
Let $$\mathcal {M}_{g}$$ be the moduli space of Riemann surfaces of genus g. Rauch (Bull Am Math Soc 68:390–394, 1962) focused his attention on and determined the so-called topological singular points of $$\mathcal {M}_{g}$$: these are the points o
Autor:
Antonio F. Costa, Ana M. Porto
In 1962 E. H. Rauch established the existence of points in the moduli space of Riemann surfaces not having a neighbourhood homeomorphic to a ball. These points are called here topologically singular. We give a different proof of the results of Rauch
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d3a9ad8622ad931409fd418ead55531d
http://arxiv.org/abs/1706.09862
http://arxiv.org/abs/1706.09862
Publikováno v:
Geometriae Dedicata. 177:149-164
Let $$\mathcal {M}_{(g,+,k)}^{K}$$ be the moduli space of orientable Klein surfaces of genus $$g$$ with $$k$$ boundary components (see Alling and Greenleaf in Lecture notes in mathematics, vol 219. Springer, Berlin, 1971; Natanzon in Russ Math Surv 4
Publikováno v:
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas. 104:81-86
The moduli space $$ \mathcal{M}_g $$ of compact Riemann surfaces of genus g has the structure of an orbifold and the set of singular points of such orbifold is the branch locus $$ \mathcal{B}_g $$ . In this article we present some results related wit
Publikováno v:
International Journal of Mathematics. 20:1069-1080
A Riemann surface X of genus g > 2 is elliptic-hyperelliptic if it admits a conformal involution h such that the orbit space X/〈h〉 has genus one. This elliptic-hyperelliptic involution h is unique for g > 5 [1]. In a previous article [3], we esta
Publikováno v:
European Journal of Combinatorics. 27:228-234
We obtain a formula for the number of classes of regular branched coverings of compact surfaces. The formula gives the number of coverings with a fixed automorphism group G and a determined type of branching data in terms of algebraic operations in t
Publikováno v:
Israel Journal of Mathematics. 140:145-155
LetX be a Riemann surface of genusg. The surfaceX is called elliptic-hyperelliptic if it admits a conformal involutionh such that the orbit spaceX/〈h〉 has genus one. The involutionh is then called an elliptic-hyperelliptic involution. Ifg>5 then
Autor:
Antonio F. Costa, Ana M. Porto
Publikováno v:
Comptes Rendus Mathematique. 334:899-902
Resume Nous obtenons un invariant galoisien pour des revetements de surfaces qui joue un role equivalent a celui de l'invariant Arf de Protopopov [3] pour certains types de revetements a ramification impaire. L'approche par revetements galoisiens ass
Publikováno v:
Geometriae Dedicata, 177, 149–164
In this work, we prove that the hyperelliptic branch locus of orientable Klein surfaces of genus [Formula: see text] with one boundary component is connected and in the case of non-orientable Klein surfaces it has [Formula: see text] components, if [
A Klein surface is a surface with a dianalytic structure. A double of a Klein surface $X$ is a Klein surface $Y$ such that there is a degree two morphism (of Klein surfaces) $Y\rightarrow X$. There are many doubles of a given Klein surface and among
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f26577c94b021744efc0f109878ac8bf