Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Ana Cristina Mereu"'
Autor:
Jaume Llibre, Ana Cristina Mereu
Publikováno v:
Electronic Journal of Differential Equations, Vol 2013, Iss 195,, Pp 1-8 (2013)
We divide $\mathbb{R}^2$ into sectors $S_1,\dots ,S_l$, with $l>1$ even, and define a discontinuous differential system such that in each sector, we have a smooth generalized Lienard polynomial differential equation $\ddot{x}+f_i(x)\dot{x} +g_i(x)
Externí odkaz:
https://doaj.org/article/75a316ec9fd14eb788d5c4fe43e83e4e
Publikováno v:
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Recercat. Dipósit de la Recerca de Catalunya
instname
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Recercat. Dipósit de la Recerca de Catalunya
instname
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Agraïments: The first author is partially supported by FEDER-UNAB10-4E-378. The second author is partially supported by a FAPESP-BRAZIL grant 2012/18780-0 and a CNPq grant 449655/2014-8. The third author is partially supported by a FAPESP-BRAZIL gra
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1e3e230ac785483af0a546b74097d8fb
http://hdl.handle.net/2072/408863
http://hdl.handle.net/2072/408863
Autor:
Ana Cristina Mereu, Francisco Braun
Let the three-dimensional differential system defined by the jerk equation x = − a x + x x 2 − x 3 − b x + c x , with a , b , c ∈ R . When a = b = 0 and c 0 the equilibrium point localized at the origin of coordinates is a zero-Hopf equilibri
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a2444b01460688c64a3702bee2287ef1
http://arxiv.org/abs/2003.12280
http://arxiv.org/abs/2003.12280
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
The present paper is devoted to study an estimative to the number of limit cycles which bifurcate from the periodic orbits of the linear center $$\dot{x}=y, \dot{y}=-x$$ by the averaging method of first order when it is perturbed inside a class of di
Publikováno v:
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Recercat. Dipósit de la Recerca de Catalunya
instname
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universitat Autònoma de Barcelona
Recercat. Dipósit de la Recerca de Catalunya
instname
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
We apply the averaging theory of first order for discontinuous differential systems to study the bifurcation of limit cycles from the periodic orbits of the uniform isochronous center of the differential systems \begin{document} $\dot{x}=-y+x^2, \;\d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::55e028dc97a913d9953ccb965cc28845
https://ddd.uab.cat/record/221378
https://ddd.uab.cat/record/221378
Publikováno v:
Nonlinear Analysis: Real World Applications. 20:67-73
We study the number of limit cycles which can bifurcate from the periodic orbits of a linear center perturbed by nonlinear functions inside the class of all classical polynomial Lienard differential equations allowing discontinuities. In particular o
Publikováno v:
Discrete & Continuous Dynamical Systems - A. 33:1177-1199
We study the dynamics near an equilibrium point of a $2$-parameter family of a reversible system in $\mathbb{R}^6$. In particular, we exhibit conditions for the existence of periodic orbits near the equilibrium of systems having the form $x^{(vi)}+ \
Publikováno v:
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Recercat. Dipósit de la Recerca de Catalunya
instname
Universitat Autònoma de Barcelona
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Recercat. Dipósit de la Recerca de Catalunya
instname
Agraïments: The first author is partially supported by a FAPESP-BRAZIL grant 2014/26149-3. The third author is partially supported by a FAPESP-BRAZIL grant 2012/18780-0 and a CNPq grant 449655/2014-8. The three authors are also supported by a CAPES
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::11900ed4e797842b1a0f11f3678a8eff
https://ddd.uab.cat/record/169474
https://ddd.uab.cat/record/169474
Autor:
Jaume Llibre, Ana Cristina Mereu
Publikováno v:
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Recercat. Dipósit de la Recerca de Catalunya
instname
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Universitat Autònoma de Barcelona
Recercat. Dipósit de la Recerca de Catalunya
instname
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
We study the limit cycles of generalized Kukles polynomial differential systems using averaging theory of first and second order.
Publikováno v:
International Journal of Bifurcation and Chaos. 20:3341-3344
We provide an algorithm for studying invariant tori fulfilled by periodic orbits of a perturbed system which emerge from the set of periodic orbits of an unperturbed linear system in p : q resonance. We illustrate the algorithm with an application.