Zobrazeno 1 - 10
of 1 089 552
pro vyhledávání: '"An Xia"'
Publikováno v:
Gaoyuan qixiang, Vol 42, Iss 4, Pp 1005-1017 (2023)
Short-duration heavy rain(HR) causes serious disasters.However, because of its local abrupt occurrence and evenly distribution, it is difficult to be nowcasted and warned with lead times of 0~2 hours by traditional extrapolations of radar ech
Externí odkaz:
https://doaj.org/article/754f7e398ad14b38a7ad97891277bbfe
Publikováno v:
暴雨灾害, Vol 41, Iss 5, Pp 598-606 (2022)
Based on the principle of convolution calculation,this study improves the conventional convolution method and constructs the isolated point convolution kernel,linear convolution kernel,and weak echo convolution kernel. Based on this improved conventi
Externí odkaz:
https://doaj.org/article/d47e11f4137140468735c8c993cb558d
Autor:
Dongsheng Zhai, Wenwen Wang, Zichen Ye, Ke Xue, Guo Chen, Sijun Hu, Zhao Yan, Yanhai Guo, Fang Wang, Xubo Li, An Xiang, Xia Li, Zifan Lu, Li Wang
Publikováno v:
Cell & Bioscience, Vol 12, Iss 1, Pp 1-21 (2022)
Abstract Background Sepsis is a fatal condition commonly caused by Methicillin-resistant Staphylococcus aureus (MRSA) with a high death rate. Macrophages can protect the host from various microbial pathogens by recognizing and eliminating them. Earli
Externí odkaz:
https://doaj.org/article/1dc1d9170ee24c7eba4cfd7aba9a1533
Autor:
Cao, Zhen, Aharonian, F., An, Q., Axikegu, Bai, Y. X., Bao, Y. W., Bastieri, D., Bi, X. J., Bi, Y. J., Cai, J. T., Cao, Q., Cao, W. Y., Cao, Zhe, Chang, J., Chang, J. F., Chen, A. M., Chen, E. S., Chen, Liang, Chen, Lin, Chen, Long, Chen, M. J., Chen, M. L., Chen, Q. H., Chen, S. H., Chen, S. Z., Chen, T. L., Chen, Y., Cheng, N., Cheng, Y. D., Cui, M. Y., Cui, S. W., Cui, X. H., Cui, Y. D., Dai, B. Z., Dai, H. L., Dai, Z. G., Danzengluobu, Dong, X. Q., Duan, K. K., Fan, J. H., Fan, Y. Z., Fang, J., Fang, K., Feng, C. F., Feng, L., Feng, S. H., Feng, X. T., Feng, Y. L., Gabici, S., Gao, B., Gao, C. D., Gao, L. Q., Gao, Q., Gao, W., Gao, W. K., Ge, M. M., Geng, L. S., Giacinti, G., Gong, G. H., Gou, Q. B., Gu, M. H., Guo, F. L., Guo, X. L., Guo, Y. Q., Guo, Y. Y., Han, Y. A., He, H. H., He, H. N., He, J. Y., He, X. B., He, Y., Hor, Y. K., Hou, B. W., Hou, C., Hou, X., Hu, H. B., Hu, Q., Hu, S. C., Huang, D. H., Huang, T. Q., Huang, W. J., Huang, X. T., Huang, X. Y., Huang, Y., Huang, Z. C., Ji, X. L., Jia, H. Y., Jia, K., Jiang, K., Jiang, X. W., Jiang, Z. J., Jin, M., Kang, M. M., Ke, T., Kuleshov, D., Kurinov, K., Li, B. B., Li, Cheng, Li, Cong, Li, D., Li, F., Li, H. B., Li, H. C., Li, H. Y., Li, J., Li, Jian, Li, Jie, Li, K., Li, W. L., Li, X. R., Li, Xin, Li, Y. Z., Li, Zhe, Li, Zhuo, Liang, E. W., Liang, Y. F., Lin, J., Liu, B., Liu, C., Liu, D., Liu, H., Liu, H. D., Liu, J., Liu, J. L., Liu, J. Y., Liu, M. Y., Liu, R. Y., Liu, S. M., Liu, W., Liu, Y., Liu, Y. N., Lu, R., Luo, Q., Lv, H. K., Ma, B. Q., Ma, L. L., Ma, X. H., Mao, J. R., Min, Z., Mitthumsiri, W., Mu, H. J., Nan, Y. C., Neronov, A., Ou, Z. W., Pang, B. Y., Pattarakijwanich, P., Pei, Z. Y., Qi, M. Y., Qi, Y. Q., Qiao, B. Q., Qin, J. J., Ruffolo, D., Sáiz, A., Semikoz, D., Shao, C. Y., Shao, L., Shchegolev, O., Sheng, X. D., Shu, F. W., Song, H. C., Stenkin, Yu. V., Stepanov, V., Su, Y., Sun, Q. N., Sun, X. N., Sun, Z. B., Tam, P. H. T., Tang, Q. W., Tang, Z. B., Tian, W. W., Wang, C., Wang, C. B., Wang, G. W., Wang, H. G., Wang, H. H., Wang, J. C., Wang, K., Wang, L. P., Wang, L. Y., Wang, P. H., Wang, R., Wang, W., Wang, X. G., Wang, X. Y., Wang, Y., Wang, Y. D., Wang, Y. J., Wang, Z. H., Wang, Z. X., Wang, Zhen, Wang, Zheng, Wei, D. M., Wei, J. J., Wei, Y. J., Wen, T., Wu, C. Y., Wu, H. R., Wu, S., Wu, X. F., Wu, Y. S., Xi, S. Q., Xia, J., Xia, J. J., Xiang, G. M., Xiao, D. X., Xiao, G., Xin, G. G., Xin, Y. L., Xing, Y., Xiong, Z., Xu, D. L., Xu, R. F., Xu, R. X., Xu, W. L., Xue, L., Yan, D. H., Yan, J. Z., Yan, T., Yang, C. W., Yang, F., Yang, F. F., Yang, H. W., Yang, J. Y., Yang, L. L., Yang, M. J., Yang, R. Z., Yang, S. B., Yao, Y. H., Yao, Z. G., Ye, Y. M., Yin, L. Q., Yin, N., You, X. H., You, Z. Y., Yu, Y. H., Yuan, Q., Yue, H., Zeng, H. D., Zeng, T. X., Zeng, W., Zha, M., Zhang, B. B., Zhang, F., Zhang, H. M., Zhang, H. Y., Zhang, J. L., Zhang, L. X., Zhang, Li, Zhang, P. F., Zhang, P. P., Zhang, R., Zhang, S. B., Zhang, S. R., Zhang, S. S., Zhang, X., Zhang, X. P., Zhang, Y. F., Zhang, Yi, Zhang, Yong, Zhao, B., Zhao, J., Zhao, L., Zhao, L. Z., Zhao, S. P., Zheng, F., Zheng, J. H., Zhou, B., Zhou, H., Zhou, J. N., Zhou, M., Zhou, P., Zhou, R., Zhou, X. X., Zhu, C. G., Zhu, F. R., Zhu, H., Zhu, K. J., Zou, Y. C., Zuo, X.
We report the detection of an extended very-high-energy (VHE) gamma-ray source coincident with the locations of middle-aged (62.4~\rm kyr) pulsar PSR J0248+6021, by using the LHAASO-WCDA data of live 796 days and LHAASO-KM2A data of live 1216 days. A
Externí odkaz:
http://arxiv.org/abs/2410.04425
Autor:
Zhong, Tianyang, Liu, Zhengliang, Pan, Yi, Zhang, Yutong, Zhou, Yifan, Liang, Shizhe, Wu, Zihao, Lyu, Yanjun, Shu, Peng, Yu, Xiaowei, Cao, Chao, Jiang, Hanqi, Chen, Hanxu, Li, Yiwei, Chen, Junhao, Hu, Huawen, Liu, Yihen, Zhao, Huaqin, Xu, Shaochen, Dai, Haixing, Zhao, Lin, Zhang, Ruidong, Zhao, Wei, Yang, Zhenyuan, Chen, Jingyuan, Wang, Peilong, Ruan, Wei, Wang, Hui, Zhao, Huan, Zhang, Jing, Ren, Yiming, Qin, Shihuan, Chen, Tong, Li, Jiaxi, Zidan, Arif Hassan, Jahin, Afrar, Chen, Minheng, Xia, Sichen, Holmes, Jason, Zhuang, Yan, Wang, Jiaqi, Xu, Bochen, Xia, Weiran, Yu, Jichao, Tang, Kaibo, Yang, Yaxuan, Sun, Bolun, Yang, Tao, Lu, Guoyu, Wang, Xianqiao, Chai, Lilong, Li, He, Lu, Jin, Sun, Lichao, Zhang, Xin, Ge, Bao, Hu, Xintao, Zhang, Lian, Zhou, Hua, Zhang, Lu, Zhang, Shu, Liu, Ninghao, Jiang, Bei, Kong, Linglong, Xiang, Zhen, Ren, Yudan, Liu, Jun, Jiang, Xi, Bao, Yu, Zhang, Wei, Li, Xiang, Li, Gang, Liu, Wei, Shen, Dinggang, Sikora, Andrea, Zhai, Xiaoming, Zhu, Dajiang, Liu, Tianming
This comprehensive study evaluates the performance of OpenAI's o1-preview large language model across a diverse array of complex reasoning tasks, spanning multiple domains, including computer science, mathematics, natural sciences, medicine, linguist
Externí odkaz:
http://arxiv.org/abs/2409.18486
Deep learning, particularly convolutional neural networks (CNNs) and Transformers, has significantly advanced 3D medical image segmentation. While CNNs are highly effective at capturing local features, their limited receptive fields may hinder perfor
Externí odkaz:
http://arxiv.org/abs/2409.12533
Autor:
Wu, Junda, Zhang, Zhehao, Xia, Yu, Li, Xintong, Xia, Zhaoyang, Chang, Aaron, Yu, Tong, Kim, Sungchul, Rossi, Ryan A., Zhang, Ruiyi, Mitra, Subrata, Metaxas, Dimitris N., Yao, Lina, Shang, Jingbo, McAuley, Julian
Multimodal large language models (MLLMs) equip pre-trained large-language models (LLMs) with visual capabilities. While textual prompting in LLMs has been widely studied, visual prompting has emerged for more fine-grained and free-form visual instruc
Externí odkaz:
http://arxiv.org/abs/2409.15310
Publikováno v:
Atmosphere, Vol 14, Iss 12, p 1735 (2023)
A long-lasting rainfall event exceeding historical extremes took place in Jiangxi, China, from May 4 to 6, 2023. Because of the concentrated duration of precipitation, it led to significant water accumulation in the northern, central, and southern re
Externí odkaz:
https://doaj.org/article/0bc2620eea2543a9b7c02c221381b927
Navigating efficiently to an object in an unexplored environment is a critical skill for general-purpose intelligent robots. Recent approaches to this object goal navigation problem have embraced a modular strategy, integrating classical exploration
Externí odkaz:
http://arxiv.org/abs/2410.19697
Solving linear ordinary differential equations (ODE) is one of the most promising applications for quantum computers to demonstrate exponential advantages. The challenge of designing a quantum ODE algorithm is how to embed non-unitary dynamics into i
Externí odkaz:
http://arxiv.org/abs/2410.19628