Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Amy Glen"'
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol Vol. 12 no. 5, Iss Combinatorics (2010)
Combinatorics
Externí odkaz:
https://doaj.org/article/564ddf3a0a0a46628556adc8d93497e7
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol Vol. 9 no. 1, Iss Automata, Logic and Semantics (2007)
Automata, Logic and Semantics
Externí odkaz:
https://doaj.org/article/b67eee8e55574e67b53f790532f94847
Autor:
Hang Phan, Amanda Harris, Hannah Wilkins, Amy Glen, Jane S. Lucas, Florina Borca, Amanda Friend, Woolf T. Walker, Samantha Packham
Publikováno v:
Epidemiology.
Background: nNO, alongside clinical history, is established in PCD screening. We describe our experience measuring nNO across the age range comparing methods, analysers, PCD diagnostic status & outliers. Methods: 856 patients (0.4-82.8yrs) referred t
Recently the Fibonacci word $W$ on an infinite alphabet was introduced by [Zhang et al., Electronic J. Combinatorics 24-2 (2017) #P2.52] as a fixed point of the morphism $\phi: (2i) \mapsto (2i)(2i+ 1),\ (2i+ 1) \mapsto (2i+ 2)$ over all $i \in \math
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2ff1c58e27ce6fa9a37dbbc21efa6c5f
http://arxiv.org/abs/1710.02782
http://arxiv.org/abs/1710.02782
In this paper, we determine the maximum number of distinct Lyndon factors that a word of length $n$ can contain. We also derive formulas for the expected total number of Lyndon factors in a word of length $n$ on an alphabet of size $\sigma$, as well
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::990b81fd54c5cc208d07f51de8608f89
http://arxiv.org/abs/1701.00928
http://arxiv.org/abs/1701.00928
Autor:
Amy Glen, Jean-Paul Allouche
Publikováno v:
L’Enseignement Mathématique. 56:365-401
Starting from a study of Y. Bugeaud and A. Dubickas (2005) on a question in distribution of real numbers modulo 1 via combinatorics on words, we survey some combinatorial properties of (epi)Sturmian sequences and distribution modulo 1 in connection t
Autor:
Jacques Justin, Amy Glen
Publikováno v:
RAIRO - Theoretical Informatics and Applications. 43:403-442
In this paper, we survey the rich theory of infinite episturmian words which generalize to any finite alphabet, in a rather resembling way, the well-known family of Sturmian words on two letters. After recalling definitions and basic properties, we c
Publikováno v:
European Journal of Combinatorics
European Journal of Combinatorics, Elsevier, 2009, 30, pp.510--531
European Journal of Combinatorics, Elsevier, 2009, 30, pp.510--531
In this paper, we study combinatorial and structural properties of a new class of finite and infinite words that are 'rich' in palindromes in the utmost sense. A characteristic property of so-called "rich words" is that all complete returns to any pa
Autor:
Stephen A. Ramsey, Zheng Liu, Arash Termehchy, Aayam Shrestha, Amy Glen, Yodsawalai Chodpathumwan
Publikováno v:
SIGMOD Conference
Supervised and Unsupervised ML algorithms are widely used over graphs. They use the structural properties of the data to deliver effective results. It is known that the same information can be represented under various graph structures. Thus, these a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::547afb4f071fb8c16f7e2228a811cbe3
Autor:
Amy Glen
Publikováno v:
Theoretical Computer Science. 352:31-46
This paper is concerned with palindromes occurring in characteristic Sturmian words $c_\alpha$ of slope $\alpha$, where $\alpha \in (0,1)$ is an irrational. As $c_\alpha$ is a uniformly recurrent infinite word, any (palindromic) factor of $c_\alpha$