Zobrazeno 1 - 10
of 75
pro vyhledávání: '"Amorim, Lino"'
Autor:
Amorim, Lino, Tu, Junwu
Categorical Enumerative Invariants (CEI) are invariants associated with unital cyclic $A_\infty$-categories that are smooth, proper and satisfy the Hodge-to-de-Rham degeneration property. In this paper, we formulate and prove their Morita invariance.
Externí odkaz:
http://arxiv.org/abs/2209.02744
Autor:
Amorim, Lino, Cho, Cheol-Hyun
We introduce the notion of ungraded matrix factorization as a mirror of non-orientable Lagrangian submanifolds. An ungraded matrix factorization of a polynomial $W$, with coefficients in a field of characteristic 2, is a square matrix $Q$ of polynomi
Externí odkaz:
http://arxiv.org/abs/2205.01046
Autor:
Amorim, Lino, Tu, Junwu
In this paper we prove an inverse function theorem in derived differential geometry. More concretely, we show that a morphism of curved $L_\infty$ spaces which is a quasi-isomorphism at a point has a local homotopy inverse. This theorem simultaneousl
Externí odkaz:
http://arxiv.org/abs/2008.01747
Publikováno v:
CAG Volume 32, No 6, 2024
We construct a Kodaira-Spencer map from the big quantum cohomology of a sphere with three orbifold points to the Jacobian ring of the mirror Landau-Ginzburg potential function. This is constructed via the Lagrangian Floer theory of the Seidel Lagrang
Externí odkaz:
http://arxiv.org/abs/2002.11180
Autor:
Amorim, Lino, Tu, Junwu
Publikováno v:
Selecta Math. (N.S.) 28 (2022), no. 3, Paper No. 54, 44 pp
We study categorical primitive forms for Calabi--Yau $A_\infty$ categories with semi-simple Hochschild cohomology. We classify these primitive forms in terms of certain grading operators on the Hochschild homology. We use this result to prove that, i
Externí odkaz:
http://arxiv.org/abs/1909.05319
Publikováno v:
Math. Proc. Cambridge Philos. Soc. 165 (2018), no. 3, 411-434
We construct graph selectors for compact exact Lagrangians in the cotangent bundle of an orientable, closed manifold. The construction combines Lagrangian spectral invariants developed by Oh and results by Abouzaid about the Fukaya category of a cota
Externí odkaz:
http://arxiv.org/abs/1603.06966
Autor:
Amorim, Lino, Ben-Bassat, Oren
Publikováno v:
Adv. Theor. Math. Phys. 21 (2017), no. 2, 289-381
In this article, we construct a $2$-category of Lagrangians in a fixed shifted symplectic derived stack S. The objects and morphisms are all given by Lagrangians living on various fiber products. A special case of this gives a $2$-category of $n$-shi
Externí odkaz:
http://arxiv.org/abs/1601.01536
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Amorim, Lino
Publikováno v:
Internat. J. Math. 28 (2017), no. 4, 1750026, 38 pp
Given a compact Lagrangian submanifold $L$ of a symplectic manifold $(M,\omega)$, Fukaya, Oh, Ohta and Ono construct a filtered $A_\infty$-algebra $\mathcal{F}(L)$, on the cohomology of $L$, which we call the Fukaya algebra of $L$. In this paper we d
Externí odkaz:
http://arxiv.org/abs/1407.8436
Autor:
Amorim, Lino
Publikováno v:
J. Pure Appl. Algebra 220 (2016), no. 12, 3984-4016
We define the tensor product of filtered $A_\infty$-algebras. establish some of its properties and give a partial description of the space of bounding cochains in the tensor product. Furthermore we show that in the case of classical $A_\infty$-algebr
Externí odkaz:
http://arxiv.org/abs/1404.7184