Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Ammar, Mabrouk Ben"'
Autor:
Ammar, Mabrouk Ben
We consider the spaces $\mathcal{F}_\mu$ of polynomial $\mu$-densities on the line as $\mathfrak{sl}(2)$-modules and then we compute the cohomological spaces $\mathrm{H}^2_\mathrm{diff}(\mathfrak{sl}(2), \mathcal{D}_{\bar{\lambda},\mu})$, where $\mu\
Externí odkaz:
http://arxiv.org/abs/2311.09199
Autor:
Ammar, Mabrouk Ben
We consider a nonlinear representation of a Lie algebra which is regular on an abelian ideal, we define a normal form which generalizes that defined in [D. Arnal, M. Ben Ammar, M. Selmi, {\rm Normalisation d'une repr\'esentation non lin\'eaire d'une
Externí odkaz:
http://arxiv.org/abs/1701.04377
Autor:
Ammar, Mabrouk ben, Mtaouaa, Wafa
Publikováno v:
International Journal of Geometric Methods in Modern Physics Vol. 15, No. 5 (2018) 1850077 (17 pages)
We classify deformations of $\mathfrak{osp}(2|2)-$module structure on the spaces of symbols $\mathfrak{S}_d^2$ of differential operators acting on the space of weighted densities $\mathfrak{F}_{\lambda}^{2}$.
Comment: 14 pages
Comment: 14 pages
Externí odkaz:
http://arxiv.org/abs/1611.08147
We consider the $\mu$-densities spaces $\mathcal{F}_\mu$ with $\mu\in\mathbb{R}$, we compute the space $\mathrm{H}^1_\mathrm{diff}(\mathfrak{aff}(1),\mathrm{D}_{\lambda,\mu})$ where $\lambda=(\lambda_1,\dots,\lambda_n)\in\mathbb{R}^n$ and $\mathrm{D}
Externí odkaz:
http://arxiv.org/abs/1604.08325
Autor:
Ammar, Mabrouk Ben, Sidaoui, Rabeb
We consider the spaces $\mathcal{F}_\mu$ of polynomial $\mu$-densities on the line as $\mathfrak{sl}(2)$-modules and then we compute the cohomological spaces $\mathrm{H}^1_\mathrm{diff}(\mathfrak{sl}(2), \mathcal{D}_{\bar{\lambda},\mu})$, where $\mu\
Externí odkaz:
http://arxiv.org/abs/1512.02847
Over the $(1,n)$-dimensional real supercircle, we consider the $\mathcal{K}(n)$-modules of linear differential operators, $\frak{D}^n_{\lambda,\mu}$, acting on the superspaces of weighted densities, where $\mathcal{K}(n)$ is the Lie superalgebra of c
Externí odkaz:
http://arxiv.org/abs/1306.0101
Autor:
Basdouri, Imed, Ammar, Mabrouk Ben
Publikováno v:
Acta Math. Hungar.(2012)
We consider the sl(2)-module structure on the spaces of symbols of differential opera- tors acting on the spaces of weighted densities. We compute the necessary and sufficient integrability conditions of a given infinitesimal deformation of this stru
Externí odkaz:
http://arxiv.org/abs/1004.1700
Publikováno v:
JOURNAL OF MATHEMATICAL PHYSICS 51, 043504 (2010)
Over the $(1,n)$-dimensional real superspace, $n>1$, we classify $\mathcal{K}(n)$-invariant binary differential operators acting on the superspaces of weighted densities, where $\mathcal{K}(n)$ is the Lie superalgebra of contact vector fields. This r
Externí odkaz:
http://arxiv.org/abs/0912.5070
Publikováno v:
International Journal of Geometric Methods in Modern Physics, Vol. 9, No. 4 (2012) 1250033
We compute the first cohomology of the ortosymplectic Lie superalgebra $\mathfrak{osp}(1|2)$ on the (1,1)-dimensional real superspace with coefficients in the superspace $\frak{D}_{\lambda,\nu;\mu}$ of bilinear differential operators acting on weight
Externí odkaz:
http://arxiv.org/abs/0911.2769
We entirely compute the cohomology for a natural and large class of $\mathfrak{osp}(1|2)$ modules $M$. We study the restriction to the $\mathfrak{sl}(2)$ cohomology of $M$ and apply our results to the module $M={\mathfrak D}_{\lambda,\mu}$ of differe
Externí odkaz:
http://arxiv.org/abs/0907.0224