Zobrazeno 1 - 10
of 72
pro vyhledávání: '"Amit Ranjan Trivedi"'
Autor:
Changhyeon Lee, Leila Rahimifard, Junhwan Choi, Jeong-ik Park, Chungryeol Lee, Divake Kumar, Priyesh Shukla, Seung Min Lee, Amit Ranjan Trivedi, Hocheon Yoo, Sung Gap Im
Publikováno v:
Nature Communications, Vol 15, Iss 1, Pp 1-12 (2024)
Abstract Probabilistic inference in data-driven models is promising for predicting outputs and associated confidence levels, alleviating risks arising from overconfidence. However, implementing complex computations with minimal devices still remains
Externí odkaz:
https://doaj.org/article/fbfcc4e40a1c44fbad736369add4619c
Autor:
Shamma Nasrin, Ahish Shylendra, Nastaran Darabi, Theja Tulabandhula, Wilfred Gomes, Ankush Chakrabarty, Amit Ranjan Trivedi
Publikováno v:
IEEE Access, Vol 10, Pp 81447-81457 (2022)
This work proposes a novel Energy-aware Network Operator Search (ENOS) approach to address the energy-accuracy trade-offs of a deep neural network (DNN) accelerator. In recent years, novel hardware-friendly inference operators such as binary-weight,
Externí odkaz:
https://doaj.org/article/566feb4a1a1346518a4bcd19560df7a5
Publikováno v:
IEEE Access, Vol 8, Pp 216259-216270 (2020)
This paper presents a hardware management technique that enables energy-efficient acceleration of deep neural networks (DNNs) on realtime-constrained embedded edge devices. It becomes increasingly common for edge devices to incorporate dedicated hard
Externí odkaz:
https://doaj.org/article/90ea5134965d486f9679abdf6026d4b2
Publikováno v:
IEEE Internet of Things Journal. 9:24615-24627
Publikováno v:
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 41:2107-2114
Ferroelectric field-effect transistor-based circuit implementation mimicking FitzHugh-Nagumo neuron is proposed in this work. The proposed circuit is shown to mimic biological neuron properties such as excitation block and anodal break excitation whi
Publikováno v:
2023 24th International Symposium on Quality Electronic Design (ISQED).
Autor:
Amit Ranjan Trivedi, Sawyer B. Fuller, Theja Tulabandhula, Priyesh Shukla, Ankith Muralidhar, Nick Iliev
Publikováno v:
IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 30:68-80
We propose a novel compute-in-memory (CIM)-based ultralow-power framework for probabilistic localization of insect-scale drones. Localization is a critical subroutine for path planning and rotor control in drones, where a drone is required to continu
Publikováno v:
2023 36th International Conference on VLSI Design and 2023 22nd International Conference on Embedded Systems (VLSID).
Publikováno v:
2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS).
Autor:
Silu Guo, William A. Gaviria Rojas, Mark C. Hersam, Hadallia Bergeron, Stephanie E. Liu, Shamma Nasrin, Ahish Shylendra, Hong Sub Lee, Amit Ranjan Trivedi, Shaowei Li, Jiangtan Yuan, Vinod K. Sangwan
Publikováno v:
Nano Letters. 21:6432-6440
Artificial intelligence and machine learning are growing computing paradigms, but current algorithms incur undesirable energy costs on conventional hardware platforms, thus motivating the exploration of more efficient neuromorphic architectures. Towa