Zobrazeno 1 - 10
of 529
pro vyhledávání: '"Amini, Massoud"'
Autor:
Amini, Massoud, Meng, Qing
We define an equivariant and equicovariant versions of the notion of module nuclearity. More precisely, for a discrete group $\Gamma$ and operator $\mathcal A$-$\Gamma$-(co)module $\mathcal B$, $\mathcal E$ over a $\Gamma$-C$^*$-algebra $\mathcal A$,
Externí odkaz:
http://arxiv.org/abs/2402.11212
Autor:
Amini, Massoud, Moosazadeh, Mahdi
Let $X$ be a product system over a quasi-lattice ordered groupoid $(G,P)$. Under mild hypotheses, we associate to $X$ a $C^*$-algebra which is couniversal for injective Nica covariant Toeplitz representations of $X$ which preserve the gauge coaction.
Externí odkaz:
http://arxiv.org/abs/2312.10923
Autor:
Amini, Massoud, Moosazadeh, Mahdi
Cuntz algebra $\mathcal O_2$ is the universal $C^*$-algebra generated by two isometries $s_1, s_2$ satisfying $s_1s_1^*+s_2s_2^*=1$. This is separable, simple, infinite $C^*$-algebra containing a copy of any nuclear $C^*$-algebra. The $C^*$-algebra $
Externí odkaz:
http://arxiv.org/abs/2312.10362
Autor:
Amini, Massoud, Moosazadeh, Mahdi
We introduce and study the notion of continuous orbit equivalence of actions of countable discrete groups on Cartan pairs in (twisted) groupoid context. We characterize orbit equivalence of actions in terms of the corresponding C$^*$-algebraic crosse
Externí odkaz:
http://arxiv.org/abs/2303.10588
Autor:
Amini, Massoud
We introduce and study various notions of amenability continuous (Borel) partial actions of locally compact (Borel) groups $G$ on topological (standard Borel) spaces. We also study amenability of partial representations of a locally compact group in
Externí odkaz:
http://arxiv.org/abs/2211.04223
Autor:
Amini, Massoud
We introduce and study a notion of module nuclear dimension for a $C^{*}$-algebra $A$ which is $C^*$-module over another $C^*$-algebra $\mathfrak A$ with compatible actions. We show that the module nuclear dimension of $A$ is zero if $A$ is $\mathfra
Externí odkaz:
http://arxiv.org/abs/2208.05658
Autor:
Amini, Massoud
A discrete group $\Gamma$ is C*-simple if the C*-algebra $C_\lambda^*(\Gamma)$ generated by the range of the left regular representation $\lambda$ on $\ell^2(\Gamma)$ is simple. In this case, $\Gamma$ acts faithfully on the Furstenberg boundary $\par
Externí odkaz:
http://arxiv.org/abs/2207.00990
Autor:
Amini, Massoud, Ghanei, Mohammad Reza
For a Fell bundle $\mathcal{B}=\left\{B_{s}\right\}_{s \in G}$ over a discrete group $G$, we use representations theory of $\mathcal{B}$ to construct the Fourier and Fourier-Stieltjes spaces $A(\mathcal{B})$ and $B(\mathcal{B})$ of $\mathcal B$. When
Externí odkaz:
http://arxiv.org/abs/2204.08761
Autor:
Amini, Massoud, Moradi, Mehdi
We partially resolve three open questions on approximation properties of traces on simple C*-algebras. We partially answer two questions raised by Nate Brown by showing that locally finite dimensional (LFD) traces form a convex set on simple C*-algeb
Externí odkaz:
http://arxiv.org/abs/2204.08738
We show that if $A$ is a simple (not necessarily unital) tracially $\mathcal{Z}$-absorbing C*-algebra and $\alpha \colon G \to \mathrm{Aut} (A)$ is an action of a finite group $G$ on $A$ with the weak tracial Rokhlin property, then the crossed produc
Externí odkaz:
http://arxiv.org/abs/2204.03615