Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Amin Farajian"'
Publikováno v:
Transactions of the Association for Computational Linguistics, Vol 12 (2024)
Externí odkaz:
https://doaj.org/article/0d5032b11f5f4bb2a69f2c81534c7e2e
Autor:
Chatzitheodorou, Konstantinos1 kchatzitheodorou@ionio.gr, Kaldeli, Eirini2 ekaldeli@image.ntua.gr, Isaac, Antoine3 antoine.isaac@europeana.eu, Scalia, Paolo4 paolo.scalia@europeana.eu, Grau Lacal, Carmen5 c.grau@pangeanic.com, Escrivá, MªÁngeles García6 ma.garcia@pangeanic.com
Publikováno v:
Information Technology & Libraries. Sep2024, Vol. 43 Issue 3, p1-17. 17p.
Publikováno v:
Proceedings of the 22nd Annual Conference of the European Association for Machine Translation
22nd Annual Conference of the European Association for Machine Translation
22nd Annual Conference of the European Association for Machine Translation, 2020, Lisboa, Portugal. pp.225-234
HAL
Lopes, A V, Farajian, M A, Bawden, R, Zhang, M & Martins, A F T 2020, Document-level Neural MT: A Systematic Comparison . in Proceedings of the 22nd Annual Conference of the European Association for Machine Translation . Lisboa, Portugal, pp. 225–234, 22nd Annual Conference of the European Association for Machine Translation, 3/11/20 . < https://eamt2020.inesc-id.pt/proceedings-eamt2020.pdf >
22nd Annual Conference of the European Association for Machine Translation
22nd Annual Conference of the European Association for Machine Translation, 2020, Lisboa, Portugal. pp.225-234
HAL
Lopes, A V, Farajian, M A, Bawden, R, Zhang, M & Martins, A F T 2020, Document-level Neural MT: A Systematic Comparison . in Proceedings of the 22nd Annual Conference of the European Association for Machine Translation . Lisboa, Portugal, pp. 225–234, 22nd Annual Conference of the European Association for Machine Translation, 3/11/20 . < https://eamt2020.inesc-id.pt/proceedings-eamt2020.pdf >
International audience; In this paper we provide a systematic comparison of existing and new document-level neural machine translation solutions. As part of this comparison, we introduce and evaluate a document-level variant of the recently proposed
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::4c18403fc1561ebc38c82cd096d6fd2d
https://hal.archives-ouvertes.fr/hal-02900686/document
https://hal.archives-ouvertes.fr/hal-02900686/document
Publikováno v:
Prague Bulletin of Mathematical Linguistics, Vol 108, Iss 1, Pp 233-244 (2017)
Improving machine translation (MT) by learning from human post-edits is a powerful solution that is still unexplored in the neural machine translation (NMT) framework. Also in this scenario, effective techniques for the continuous tuning of an existi
Publikováno v:
WMT (3)
This paper describes Unbabel's submission to the WMT2019 APE Shared Task for the English-German language pair. Following the recent rise of large, powerful, pre-trained models, we adapt the BERT pretrained model to perform Automatic Post-Editing in a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e72aae6159b55aed7f9e7b322c33652b
http://arxiv.org/abs/1905.13068
http://arxiv.org/abs/1905.13068
Publikováno v:
EACL (2)
State-of-the-art neural machine translation (NMT) systems are generally trained on specific domains by carefully selecting the training sets and applying proper domain adaptation techniques. In this paper we consider the real world scenario in which
Publikováno v:
WMT
Publikováno v:
HaCaT@EACL
A hot task in the Computer Assisted Translation scenario is the integration of Machine Translation (MT) systems that adapt sentence after sentence to the postedits made by the translators. A main role in the MT online adaptation process is played by
Autor:
Mendonça, Vânia1 (AUTHOR) vania.mendonca@tecnico.ulisboa.pt, Rei, Ricardo2 (AUTHOR) ricardo.rei@unbabel.com, Coheur, Luísa1 (AUTHOR) luisa.coheur@tecnico.ulisboa.pt, Sardinha, Alberto3 (AUTHOR) jose.alberto.sardinha@tecnico.ulisboa.pt
Publikováno v:
Computational Linguistics. Jun2023, Vol. 49 Issue 2, p325-372. 48p.