Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Amila Muthunayake"'
Publikováno v:
Electronic Research Archive, Vol 31, Iss 2, Pp 1147-1156 (2023)
We study positive solutions to the two point boundary value problem: $ \begin{equation*} \begin{matrix}Lu = -u'' = \lambda \bigg\{\dfrac{A}{u^\gamma}+M\big[u^\alpha+u^\delta\big]\bigg\} \; ;\; (0, 1) \\ u(0) = 0 = u(1)\; \; \; \; \; \; \; \; \; \;
Externí odkaz:
https://doaj.org/article/b33518527e4e4a8082eb0c4af8dee71a
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2020, Iss 88, Pp 1-7 (2020)
Let $\Omega$ be a bounded domain in $\mathbb{R}^N$; $N>1$ with a smooth boundary or $\Omega=(0,1)$. We study positive solutions to the boundary value problem of the form: \begin{equation*} \begin{aligned} -\Delta_p u - \Delta_q u&=\lambda f(u) &&\mbo
Externí odkaz:
https://doaj.org/article/400a1f31f1254912aefab4f94eb7bfcf
Publikováno v:
Mathematical Biosciences and Engineering, Vol 17, Iss 6, Pp 7838-7861 (2020)
Even though mutualistic interactions are ubiquitous in nature, we are still far from making good predictions about the fate of mutualistic communities under threats such as habitat fragmentation and climate change. Fragmentation often causes declines
Externí odkaz:
https://doaj.org/article/83996c7028b041fdbb5c22a243f42648
Publikováno v:
Electronic Research Archive. 31:1147-1156
We study positive solutions to the two point boundary value problem: \begin{document}$ \begin{equation*} \begin{matrix}Lu = -u'' = \lambda \bigg\{\dfrac{A}{u^\gamma}+M\big[u^\alpha+u^\delta\big]\bigg\} \; ;\; (0, 1) \\ u(0) = 0 = u(1)\; \; \; \; \; \
A uniqueness result for a class of infinite semipositone problems with nonlinear boundary conditions
Publikováno v:
Positivity. 25:1357-1371
We study positive solutions to the two-point boundary value problem: $$\begin{aligned} \begin{matrix} -u''=\lambda h(t) f(u)~;~(0,1) \\ u(0)=0\\ u'(1)+c(u(1))u(1)=0,\end{matrix} \end{aligned}$$ where $$\lambda >0$$ is a parameter, $$h \in C^1((0,1],(
Publikováno v:
Mathematical Biosciences and Engineering, Vol 17, Iss 6, Pp 7838-7861 (2020)
Even though mutualistic interactions are ubiquitous in nature, we are still far from making good predictions about the fate of mutualistic communities under threats such as habitat fragmentation and climate change. Fragmentation often causes declines
Publikováno v:
Topological Methods in Nonlinear Analysis. :1
We analyse positive solutions to the steady state reaction diffusion equation: \begin{equation*} \label{1.11} \begin{cases} -u''=\lambda h(t) f(u) \quad \text{in } (0,1), \\ -du'(0)+\mu(\lambda) u(0)=0,\\ u'(1)+\mu(\lambda) u(1)=0, \end{cases} \end{e